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ABSTRACT

Neuronal cultures in vitro are a versatile system for study-
ing the fundamental properties of individual neurons and neu-
ronal networks. Recently, this approach has gained attention
as a precision medicine tool. Mature neuronal cultures in
vitro exhibit synchronized collective dynamics called network
bursting. If analyzed appropriately, this activity could offer in-
sights into the network’s properties, such as its composition,
topology, and developmental and pathological processes. A
promising method for investigating the collective dynamics
of neuronal networks is to map them onto simplified dynam-
ical systems. This approach allows the study of dynamical
regimes and the characteristics of the parameters that lead to
data-consistent activity. We designed a simple biophysically
inspired dynamical system and used Bayesian inference to fit
it to a large number of recordings of in vitro population ac-
tivity. Even with a small number of parameters, the model
showed strong inter-parameter dependencies leading to invari-
ant bursting dynamics for many parameter combinations. We
further validated this observation in our analytical solution.
We found that in vitro bursting can be well characterized by
each of three dynamical regimes: oscillatory, bistable, and ex-
citable. The probability of finding a data-consistent match in a
particular regime changes with network composition and de-
velopment. The more informative way to describe the in vitro
network bursting is the effective excitability, which we ana-
lytically show to be related to the parameter-invariance of the
model’s dynamics. We establish that the effective excitability
can be estimated directly from the experimentally recorded
data. Finally, we demonstrate that effective excitability reli-
ably detects the differences between cultures of cortical, hip-
pocampal, and human pluripotent stem cell-derived neurons,
allowing us to map their developmental trajectories. Our re-
sults open a new avenue for the model-based description of
in vitro network phenotypes emerging across different experi-
mental conditions.

INTRODUCTION

Networks of neurons in vitro are a minimal system that
enables the study of the interaction between different levels
of neuronal network organization [1, 2]. As an experimental
model, cultures of neurons have been used to identify mecha-

nisms of neuronal plasticity [3, 4], homeostatic adaptation [5],
E/I balance [6–8], network development [6], and principles of
collective activity [9, 10]. More recently, with the develop-
ment of stem cell technologies, networks of human pluripo-
tent stem cell (hPSC)-derived neurons in vitro allowed re-
searchers to directly study how disease-associated genotypes
affect the properties of single neurons and the networks they
form [11–13].

Mature networks of dissociated neurons in vitro robustly
exhibit coordinated population bursting activity [14–17]. This
activity usually manifests as large synchronous events prop-
agating through the whole network, followed by long, irreg-
ular periods of quiescence. Such network activity has been
shown to occur in cortical, hippocampal, striatal, and spinal
cord cultures in vitro as well as cultures of both induced and
embryonic hPSC-derived neurons [18–22]. Population burst-
ing activity is one of the markers of successful network devel-
opment [23] and is often used to evaluate the effects of exper-
imental conditions on neurons and networks [13, 21, 22, 24–
28].

Population bursting can be modeled as a low-dimensional
slow-fast dynamical system [16, 29, 30]. Theoretical studies
suggest that network bursting emerges from an interaction of
fast recurrence and an adaptation mechanism that slowly ad-
justs network excitability [9, 16, 20, 24, 29, 31]. This principle
can be described as a low-dimensional approximation of the
recurrent activity driven by noise [32, 33].

Fitting a low-dimensional dynamical system to recorded
network dynamics can provide insights into the mechanisms
of population dynamics and can help uncover the differences
between experimental conditions. Several studies showed that
fitting reduced models allows us to map out the patterns of
cortical network activity in vivo and ex vivo and suggests
mechanistic explanations of the transition between the activ-
ity regimes induced by anesthesia, sleep and wakefulness [33–
35]. This approach has several benefits. The data-fitted model
parameters can be rendered more interpretable. Additionally,
it allows us to analyze the data using dynamical systems the-
ory, map dynamical regimes of network activity, and identify
the phase transitions. However, major challenges in finding
interpretable and appropriately describing the data parame-
ters prevented this approach from being systematically ap-
plied to the recordings of network activity. First, finding data-
consistent parameters for such models for large volumes of
data remains a daunting task. Second, when using expres-
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FIG. 1. Recurrent rate model with slow adaptation produces in-vitro-
like population bursting dynamics a) Mature cultures of dissociated
primary mouse neurons robustly exhibit population bursting in vitro
(firing rate is averaged over 64 channels in 100ms bins, data are from
[25], cortical culture 21 DIV). b) Schematic of the recurrent rate
model with slow adaptation driven by noise and an example of the
population activity produced by the model.

sive models, many parameter combinations describe the data,
and thus, finding an effective parametrization that allows the
interpretation and leveraging of this redundancy becomes a
necessity. In this study, we show how both these challenges
can be solved to generate interpretable models that allow us
to analyze the differences between culture types and network
development.

Here, we establish a simplified population model for net-
work bursting activity in vitro. We show that the in vitro-like
bursting activity emerges in a range of dynamical regimes and
can be governed by excitable, oscillatory, or bistable dynam-
ics. We applied simulation-based inference [36] to approxi-
mate the distribution of model parameters that lead to data-
consistent model dynamics. This allowed us to access the de-
pendencies between model parameters and helped us estab-
lish an effective excitability metric, that summarized the level
of intrinsic drive and adaptation in the network. We fitted the
model to a wide range of recordings of rodent primary cortical
and hippocampal cultures as well as cultures of hPSC-derived
neurons. Although they all display very similar network burst-
ing activity, we show differences in their dynamical regimes
and effective excitability both in the mature state and during
development. Finally, we demonstrate that changes in the ef-
fective excitability can be induced by acute perturbations of
single cell excitability in vitro. Our results establish a way to
describe the population activity of cultures of neurons in vitro
using low-dimensional, data-consistent models that directly
map parameters to observed dynamics, thereby enabling the
effective representation and discovery of changes across vari-
ous experimental conditions and phenotypes.

RESULTS

A low-dimensional rate model with slow adaptation generates
bursting activity

Network activity in living neuronal networks in vitro typ-
ically consists of synchronous events that rapidly propagate
throughout the whole network and long inter-burst intervals
of irregular firing with low firing rate. We model this activ-
ity using a simplified phenomenological model that allows us
to pin down the dynamical regimes associated with bursting
activity and define the key parameters controlling the activity
(Fig. 1). The average network activity (x(t)) and the adapta-
tion current (w(t)) follow:

τẋ(t) = −x(t) + Aϕ[−a(Jx(t) − w(t) + θ)] + σξ(t), (1)
τwẇ(t) = −w(t) + bx(t), (2)

where ϕ is the sigmoid nonlinearity ϕ(z) = (1 + ez)−1, ξ(t)
is an uncorrelated Gaussian white noise, and σ defines the
noise intensity. Here, τ sets the fast neural timescale, A is
the scale of the nonlinearity, a defines the gain of the input-
output relationship, J is the strength of recurrent interaction,
and θ sets an intrinsic drive (for cultures can be interpreted
as level of spontaneous activation). We interpret the noise in
the model, σξ, as fluctuations occurring within the recurrent
population of neurons, e.g., due to the spontaneous firing of
neurons. The adaptation current accounts for the average neu-
ron’s adaptation [37, 38], τw sets its timescale, and b controls
the adaptation strength. The population firing rate is computed
as y(t) = exp (mx(t)) where m is found via Poisson regression
(see Methods I A).

The model can reproduce the temporal statistics of network
bursting activity emerging in a population of neurons. Vary-
ing four key parameters – the intrinsic drive θ, the adaptation
strength b, the adaptation timescale τw, and the noise intensity
σ, allows us to find bursting-like activity matching the main
summary statics of network bursting in the data. Specifically,
we are looking for the parameters that match mean inter-burst
intervals (IBI), variability of inter-burst intervals measured as
the coefficient of variation (CV) of IBI, and average burst du-
ration.

Network bursting activity emerges in noise-driven excitable,
bistable, and oscillatory regimes

The minimal model can be well-characterized in terms of
the nature and number of fixed points. Depending on parame-
ters, it presents a limited set of dynamical regimes [39], some
of which produce network bursting-like dynamics.

Among the four key parameters of our model, only the ex-
citability and adaptation strength control the number and sta-
bility of fixed points, and we use them as primary parameters
to visualize the bifurcation diagram (Fig. 2a). The system has
three types of solutions supporting bursting-like activity: an
oscillatory solution manifesting as a limit cycle, an excitable
solution with one stable fixed point (corresponding to high or
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FIG. 2. Multiple dynamical regimes produce similar network bursting activity. a) The bifurcation diagram of the model for changing the
intrinsic drive (θ) and adaptation strength (b). b) Nullclines of the model in the oscillatory, excitable, and bistable regimes c) Examples of
generated spike counts for the model in three dynamical regimes fine-tuned to produce similar activity. d) Distributions of inter-burst intervals
(IBI), CV of IBI, and burst durations for the three example sets of model parameters (200 simulations with different random seeds). e) t-SNE
embedding of the bursting summary statistics (inter-burst intervals, CV of inter-burst intervals, and burst duration) color-coded according to
the dynamical regimes does not show any clear boundary between the regimes. f) Classification performance increases in classifiers that rely
on local similarity of points (K-Nearest Neighbors) rather than convex boundary (Linear Regression and Gaussian Naive Bayes) between the
regimes.

low activity), or a bistable solution with three fixed points (two
stable and one unstable in-between) (Fig. 2b and see Meth-
ods I D).

All three types of solutions can generate a network-bursting
activity with a wide range of average inter-burst intervals, CV
of inter-burst intervals, and average burst durations (See Ex-
tended Figures Fig. 10). Bursts in these three cases are gen-
erated by different mechanisms. In an oscillatory regime, the
system deterministically oscillates between the down and up
states, the latter corresponding to the network burst. A strong
noise can perturb such oscillations and make them irregular
(Fig. 2b and c, pink, �). In the case of a single fixed point,
network bursting can occur as an instance of excitable dynam-
ics: the noise drives the model away from the fixed point in
a direction that requires passing a high activity region (that
corresponds to the burst) before slowly returning to the fixed
point (Fig. 2b and c green, ▲). Lastly, bursting can emerge as
noise-driven transitions between two stable fixed points (one
of which corresponds to the higher activity and bursting) in
the bistable regime (Fig. 2b and c, gray, ■).

Points in the parameter space belonging to different dynam-
ical regimes can show very similar activity and corresponding
summary statistics (Fig. 2d right). To characterize this sim-
ilarity, we use the summary statistics of the model’s activity
(inter-burst intervals, CV of inter-burst intervals, burst dura-
tion, for details see burst extraction methods in Methods I A)
to determine which regime gave rise to this statistics with un-
supervised and supervised methods. A visualization of the dy-
namical regimes with t-SNE (Fig. 2e) indicates that regimes

are well-concentrated but without clear convex and continu-
ous boundaries. Both linear (Logistic Regression) and nonlin-
ear (Gaussian Naive-Bayes) classifiers perform only slightly
better than chance. The KNN-based classifier uses only local
properties of individual observations and thus can reach better
performance; however, it is still below 75% accuracy on the
test set (Fig. 2f).

Invariant bursting dynamics across different dynamical regimes

We showed in the previous section that it is impossible to
establish a one-to-one correspondence between the summary
statistics and model parameters. Additionally, when fitting
models to the experimental observations, the summary statis-
tics are noisy due to the limited data availability. Thus, instead
of searching for a single best parameter set for each given
burst statistic, we aim to determine the whole distribution of
parameters that could lead to the observed data called a pos-
terior distribution. To approximate the posterior distribution,
we employ a machine learning technique called simulation-
based inference [40]. The idea is to simulate a model with
many different parameter sets and gather the summary statis-
tics of model observables. We are interested in inverting this
map so that we get the distribution of model parameters that
could lead to each combination of summary statistics. In
most cases, this inversion cannot be done analytically, and the
machine learning community is spending a lot of effort opti-
mizing the numerical procedures and number of simulations
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FIG. 3. Simulation-based inference of the data-consistent model parameters identifies the model invariances and suggests a simple effective
excitability metric. a) Example of firing rate averaged over recording channels from a mouse primary cortical culture at 17 DIV on MEA and
examples of model activity with the parameters sampled from the approximated posterior given a set of summary statistics (1,2 - yellow) and
outside of it (3 - red). b) Summary statistics of bursting activity from the posterior (black lines: histograms of burst statistics generated by 2000
models with parameters drawn from posterior distribution) closely match the summary statistics of bursting activity from the data (vertical
dashed line). The example points from a are marked by corresponding colors and legends. c) Pairwise plots of samples from the approximated
posterior distribution for bursting in an example cortical culture (17 DIV) obtained with simulation-based inference (see main text) show a
linear dependency between the intrinsic drive and adaptation. d) Dependency between the intrinsic drive and adaptation strength on top of the
bifurcation diagram. The dashed line shows an analytically derived dependency line. The slope of this line (α) defines the effective excitability.

needed for reliable inversion [41]. Here, we use an amortized
inference approach and train a neural network to approximate
the inversion [40]. The fitted posterior can be evaluated for
any given set of experimentally observed summary statistics
(in our case, mean inter-burst intervals, CV of inter-burst in-
tervals, and burst durations) and return the model parameters
that produce the activity with these features.

We estimated the posterior distribution of parameters given
the summary statistics of network bursting in cortical cultures
we recorded at 17 and 18 DIV using MEA (example recording
seen in Fig. 3 a top, for recording details see Methods II). The
fitted neural posterior reliably identified the model parameters
that produce the desired bursting summary statistics (Fig. 2 a,
traces 1 and 2). We illustrate this for the experimental data
sample by simulating models with parameters drawn from the
posterior and observe that the simulated statistics are narrowly
centered around the experimentally observed values (Fig. 3 b),
and deviating from the posterior distribution leads to the large
mismatch in the produced data (Fig. 3 a, trace 3, Fig. 3 b red
marks).

The approximated posterior distribution of model parame-
ters revealed the dependencies between the parameters that al-
low for invariant dynamics across different underlying dynam-
ical regimes. To identify them, we can look at the pairwise
marginal distributions, where the dependencies between pa-
rameters are visible in the specific, anisotropic density (Fig. 3
c). The posterior distribution showed an almost linear depen-
dency between the network excitability and the adaptation pa-
rameter (Fig. 3 d). The system can maintain the same burst-
ing features when excitability increases by strengthening and

slowing the adaptation current. Thus, for varying values of
network excitability, one can find corresponding adaptation
parameters that would maintain invariant bursting activity. For
this example of summary statistics, the posterior distribution
spans across different dynamical regimes (mainly oscillatory
but also excitable).

The statistics of network bursting determines the effective
excitability in a fitted model

In the previous section, we observed that a continuum of
models can generate a given network bursting activity, which
is possible due to the striking dependencies between the model
parameters. To explain this dependency analytically, we fur-
ther simplified the model by substituting the input-output non-
linearity in Eq. 2 with a piece-wise linear approximation and
assumed a separation of timescales τ ≪ τw. This allowed
us to describe analytically the network dynamics for given θ
and b and obtain the mean burst duration and mean inter-burst
interval. In brief, we can find the values of network activity
and adaptation at the start/end of the burst as a local mini-
mum/maximum of the ẋ = 0 nullcline. Given these values,
we can obtain exactly the decay of the adaptation variable af-
ter the beginning of an inter-burst interval (that determines
the length of this interval). Analogously, we analyse the rise
of w(t) to obtain the burst duration. Inverting this solution,
we find the relationship between θ and b for each mean inter-
burst interval and burst duration. Then, by combining these
equations, we find a deterministic solution that describes the
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FIG. 4. The effective excitability captures the differences between primary mouse cortical and hippocampal cultures as well as hPSC-derived
neuron cultures. a) Samples from posterior distributions of the model parameters fitted to example cortical and hippocampal cultures at 24
DIV [25], and hPSC cultures at 38 days on MEA [21, 42]. b) Average firing rate of the example cultures and the corresponding model activity
(fitting rate is computed in 100ms time bins). c) Effective excitability in cortical, hippocampal culture (older than 14 DIV), and hPSC cultures
older than 21 Days on MEA (error bars - s.e.m., p < 0.00001, pairwise ind. t-test cortical vs hippocampal cultures t-val = 8.8, p < 0.00001;
cortical vs hPSC t-val = 9.158 p < 0.00001; hippocampal vs hPSC t-val=8, p < 0.00001). d) The differences in the effective excitability predict
different network response properties in cortical, hippocampal, and hPSC cultures. Example response curves computed for the cultures from
a, b.

relationship between θ and b in a full model with noise and
without timescale separation (see dashed line in Fig. 3 d). For
more details on the analytics see MethodsI E.

Our analytic solution describing the relationship between
excitability and adaptation strength for relevant parameter
ranges can be closely approximated by the line

θ ≈ αb − A/2, (3)
α = TupA/(Tdown + Tup), (4)

where Tup is the mean burst duration and Tdown is the mean
inter-burst interval (See Methods I E). We define the slope of
this line (α) as the effective excitability (Fig. 3 d, dashed line),
which can be directly computed from the summary statistics
of network bursting. This value closely follows the slope
of the dependency between the intrinsic drive and adaptation
obtained with simulation-based inference (Extended Figures
Fig.7).

The effective excitability captures the differences between
cortical, hippocampal, and human PSC cultures

Next, we asked if the differences in bursting dynamics be-
tween different types of cultures are reflected in the parame-
ters of the fitted models. We analyzed the model parameters
that reproduce the bursting statistics for primary mouse cor-
tical and hippocampal cultures [25], and hPSC-derived neu-
ronal cultures [21]. We first focused on the bursting activity
of mature cultures (older than 14 DIV for mice cultures [25]
and after 21 days for hPSC [21]).

The parameters of the fitted models are clearly different
(practically non-overlapping) between different types of cul-
tures (Fig. 4a) and can capture well the activity of the respec-
tive cultures (Fig. 3b). One of the salient differences is re-
lated to the preferred type of the dynamical regime. We esti-
mated the fraction of parameter samples for each culture type
that fall into bistable, excitable, and oscillatory regimes. We
found most of the samples for developed cortical cultures are
most consistent with the oscillatory dynamics. The hippocam-
pal and the hPSC cultures are primarily found in the excitable
regime.

As previously shown, the linear dependency accurately de-
scribes the marginal posterior distribution of θ and b, and thus,
we can use the effective excitability (α, Eq. 4) to capture the
essence of the different model-fits. Considering all mature
recordings in the datasets (n=150 for cortex, n=221 for hip-
pocampus, and n=92 for human PSC), we see a clear statis-
tical difference between them: in hPSC cultures, the effective
excitability is significantly lower than in hippocampal cultures
that, in turn, is lower than in cortical cultures (Fig. 4c). We
also found systematic differences in the noise level between
hippocampal, cortical, and, hhPSC cultures, but not in the
timescale of adaptation (see Extended Figures Fig. 12).

We verify that the effective excitability controls the net-
work’s responsiveness to external stimulation by applying
short inputs of increasing strengths. We perturbed the system
by applying an external stimulus at different times within the
inter-burst intervals and finding the probability of such input
to initiate a burst that we called response probability. Chang-
ing the effective excitability shifted the response curves to
the left, thus increasing the model’s responsiveness (Extended
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Figures Fig.. 15 and see also Fig. 4d). We computed the re-
sponse probabilities for the models fitted to the hippocampal,
cortical, and hPSC cultures (Fig. 4d). As predicted by the ef-
fective excitability, the responsiveness was the highest in cor-
tical cultures and the lowest in hPSC cultures (Fig. 4d).

Mapping the developmental trajectory of the bursting activity
with models parameters

Bursting dynamics is known to strongly change throughout
development, reflecting neuronal maturation, synaptogenesis,
and myelination of axons [6, 19, 21]. Maturation of a network
is associated with increasing network excitability measured as
a decrease in the stimulation threshold needed to elicit a burst
[6, 14]. We asked if the effective excitability ratio estimated
from the spontaneous activity of networks throughout the de-
velopment would reflect these changes. We further analyzed
the data for cortical, hippocampal, and hPSC cultures, now
considering all recording days. [25, 42]. For the recordings of
cortical and hippocampal cultures, the network activity was
detectable from approximately 7 DIV and was then recorded
until 28 DIV. We could identify the first bursting activity in
hPSC cultures from around 18 days after plating on MEA.

The effective excitability estimated from the model fitted
to spontaneous activity of standard mouse cortical and hip-
pocampal cultures showed a smooth increase over the course
of development. The activity of cortical and hippocampal cul-
tures first emerges as sparse and highly irregular, with large
inter-burst intervals and small burst durations. This is re-
flected in small values of effective excitability (Fig. 5a). The
models that fit the data are then predominately found in the
excitable region (Fig. 5a inset). Throughout development, the
activity increases, bursts become more frequent, and their du-
ration increases, which is reflected by an increase in the ef-
fective excitability (Fig. 5). The parameters of the model ac-
cordingly move closer to a Hopf-bifurcation, and at the later
stages, some of the networks are predominantly consistent
with oscillatory dynamics.

When bursting first appears at 7 DIV, cortical and hip-
pocampal cultures are not distinguishable in terms of their ex-
citability. Around 20 DIV the cortical and hippocampal cul-
tures diverged in their development with the cortical cultures,
on average, showing a higher effective excitability (Fig. 5).

The cultures of hPSC-derived neurons showed a differ-
ent pattern of development. We could reliably detect net-
work bursting activity only at 18 DIV. The network activity
at this point was characterized by a large effective excitabil-
ity (Fig. 5). Then, over development, hPSC networks slowly
decrease the ratio and reach a plateau after 31 DIV. Thus, the
development of collective activity follows a different trajec-
tory compared to the primary neuron cultures. However, our
model suggests that the hPSC-derived neuronal cultures still
exhibit either oscillatory or excitable dynamics, and at differ-
ent stages of their development, it could be consistent with
primary cultures of dissociated neurons.

Acute perturbations of KCl concentration in vitro are captured
by the changes in effective excitability

Finally, we examined how the inferred effective excitabil-
ity is related to the acute changes in excitability of individual
neurons. We cultured rat primary hippocampal neurons and
recorded their activity in different concentrations of KCl that
is known to change the excitability of neurons [18, 43]. We
first recorded the activity in standard, close to physiological,
4mM KCl. Then we changed the whole medium to a new
concentration: 1, 2.5, 5.5, 7.0, 10.0 mM (See Methodsfor ex-
perimental details).

The fitted models’ effective excitability mirrored expected
changes in excitability from varying KCl concentrations.
When increasing the concentration of KCl between 1–5.5mM
the model effective excitability increased and saturated at
7mM (Fig. 6a). When the concentration was further in-
creased to 10mM the networks typically stopped showing col-
lective bursting (Extended Figure 16). Thus, we show that
the estimated effective excitability can effectively read out the
changes introduced by acute perturbations of single neuron
excitability reflected in the changes of network activity.

DISCUSSION

We demonstrated that the effective excitability, defined as
the ratio of the network drive and adaptation is one of the key
determinants of network bursting behavior. To this end, we
used a simplified dynamical systems model and a combination
of Bayesian inference and analytic techniques. This effective
excitability separates different types of cell cultures and cap-
tures the developmental differences in population activity. We
show analytically and confirm numerically that as long as the
effective excitability remains the same, the model exhibits in-
variant bursting behavior in dynamical regimes with diverse
underlying parameters. Thus, we identified the essential in-
variance that allows us to capture the most important features
of the bursting dynamics with a minimal number of parame-
ters.

The excitable, oscillatory, and bistable network dynamics
that we identify as main possible regimes of network burst-
ing have been previously studied in the context of cortical and
hippocampal in- and ex vivo activity such as up-down states,
slow-wave oscillations and sharp wave ripples [32, 33, 35].
Our results are closely related to the work of Levenstein et
al. 2019 [33], which focused on the dynamical regimes of
the cortex and hippocampus during NREM sleep in vivo. By
matching the distributions of durations of up and down states
they demonstrated that mesoscopic activity of cortex and hip-
pocampus during NREM is best explained by excitable dy-
namics and suggested a mechanism of sharp-wave ripple-slow
wave coupling. Our model is similar to the adapting recur-
rent activity model they propose, with comparable dynamical
regimes and bifurcations. However, instead of multiplicative
noise with autocorrelations, we use additive Gaussian white
noise. Additionally, we only consider a linear adaptation that
enabled us to explicitly find the relationship between the net-
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FIG. 5. The effective excitability allows us to trace the developmental differences in the collective bursting dynamics between different
preparations. a) Both primary mouse cortical and hippocampal cultures [25] show an increase in effective excitability. In contrast, the cultures
of hPSC-derived neurons show a gradual decrease in network excitability followed by a long plateau [21]. Inset shows the fraction of samples
from the posterior distribution in each regime per day and culture type. b) Sketch of the changes in the effective excitability for the three
culture types. The models suggest that during network development, hippocampal and cortical cultures may undergo a phase transition from
the excitable to the oscillatory regime; hPSCs that we analyzed first exhibit network bursting that is consistent with the oscillatory regime and
then move towards excitable dynamics. c) Examples of average firing rates (in 100ms time bins) at different times during development.

work bursting activity and model parameters. In our paper,
we extend their results by fitting the four key parameters of
the model simultaneously. This allows us to identify param-
eter dependencies that allow for statistically identical dynam-
ics in different dynamical regimes beyond the excitable state.
This result further suggests that there are multiple paths to
network bursting dynamics, which can be critical in context
of interpreting the large variability observed in cultured neu-
ronal networks [14] and unifies varies mechanisms suggested
to explain network bursting in vitro [9, 16, 29, 44].

A detailed analysis of the dependencies between the model
parameters helped us to identify the effective excitability pa-
rameter. This parameter can be directly calculated from the
network burst durations and inter-burst intervals. We show
that the effective excitability discriminates well different types
of cultures and captures their developmental profiles. For ex-
ample, we found differences between the effective excitabil-
ity of both mature and developing cortical, hippocampal, and
hPSC cultures using publicly available datasets [21, 25]. Our
results are consistent with the original publications, where
differences were detected using individual bursting summary
statistics and dimensionality reduction of a large vector of
bursting features. In contrast, our model-based effective ex-
citability offers a more compact and interpretable description
of the activity and can be directly used to predict the respon-
siveness to external stimulation. Importantly, the differences

in responsiveness to external stimulation between cortical and
hippocampal cultures that we identify using the model were
indeed shown in experiments [6, 14, 45]. The response prop-
erties of hPSC cultures remain to be shown. Interestingly,
compared to primary cultures of hippocampal and cortical
neurons, hPSC cultures reach their steady state of effective ex-
citability via a different developmental trajectory: they start at
high levels of excitability and most likely exhibit early burst-
ing driven by an oscillation. Matching the developmental tra-
jectories of hPSC to identify the differences with primary cul-
tures of neurons is one of the challenges in the field of hPSC-
based disease models [21, 46]. Future studies should focus on
comparing the developmental profiles between various proto-
cols for hPSC-derived neurons. Here, our approach can help
align the staging for different preparations and protocols using
the effective excitability.

In our work, we focused on a simplified modeling ap-
proach to uncover the principles that constitute the dynam-
ics [33, 35, 47–50]. A complementary approach is to use very
detailed models, which can potentially reflect more detailed
features of the data and can also be parameterized using ex-
perimentally tractable parameters[16, 24, 51]. However the
the costs of finding the proper parameter set in this very high-
dimensional set may be prohibitively high: to capture the dy-
namics of a single cortical neuron one might need thousands
of equations [52] or thousands to millions of parameters in
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FIG. 6. The measured effective excitability reflects the changes in
neuronal excitability induced by an acute manipulation of the KCl
concentration. a) Average effective excitability of hippocampal cul-
tures at different concentrations of KCl in the medium (error bars
- s.e.m.). Compared to the recordings at 4mM KCl, the estimated
effective excitability was significantly higher when the KCl was in-
creased (5.5, 7mM t-test with 50000 permutations p=0.012 and 0.012
with BH-FDR correction). The estimated effective excitability was
significantly lower in 1 and 2.5mM of KCl (p=0.0079, 0.038 with
BH-FDR correction). We did not see significant differences between
5.5 and 7mM KCl. b) Example of the activity of the culture in in-
creasing concentrations of KCl with the corresponding best-fitting
models.

machine learning models [53, 54]. Additionally, it remains to
be determined how to use the invariances found in a very high-
dimensional space to generate verifiable predictions. Merging
the simplified and extended approaches will be a very promis-
ing avenue for future research.

Due to its simplicity our modeling ignores some aspects
of network bursting variability such as burst shapes [14], and
compositions of busts [55]. The model also does not explicitly
include inhibition, assuming that inhibitory interaction hap-
pens on a very short timescale and is captured by the variance
of the noise [7, 24]. Furthermore, our model does not include
the notion of space and is therefore not suitable for describing
the spatial phenomena in network dynamics [9, 27].

Our work demonstrates that simplified models are not only
useful for describing the dynamical regimes underlying net-
work activity but also for building a deeper quantitative un-
derstanding of the statistics of network activity. Furthermore,
we show that in the context of in vitro networks, mapping their
population activity to model parameters allows for a rapid as-
sessment and interpretation of the emerging network pheno-
types.
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I. METHODS

A. Rate model

The rate model (Eq. 2) was simulated using the Euler-
Maruyama method with a 0.05 ms integration time. To extract
the summary statistics, we first simulate 10s of activity and
exclude this as a burning-in period. Then we keep simulating
until at least 30 bursts are collected.

Burst detection The bursts were detected by discretizing
the activity values x(t) and generating quasi-spike times where
x > 0, with the number of spikes at that time being equal to
the discretized x. We use a modified version of the minimum
interval algorithm (MI), which has been shown to robustly de-
tect burst [24, 56]. The algorithm detects bursts as the ac-
tivity during which inter-spike intervals are below a thresh-
old. Specifically, we set the inter-spike interval threshold to
be 10ms and check if the bursts are longer than 10ms and if
the number of spikes within the bursts is larger than 5. We
then merge the bursts if the inter-burst interval between them
is longer than 20ms.

Burst summary statistics. From the detected burst times,
we compute the average burst durations (Tup) and the duration
of inter-burst intervals (IBI, Tdown) as the time between the end
of a burst and the beginning of the next one (note that we use a
similar definition for the burst analysis of experimental data).
We also estimate the coefficient of variation of the inter-burst
intervals (as std(Tdown)/mean(Tdown)).

Spike rate mapping After simulating the activity of the
model, we mapped on it the neuronal firing rate as y(t) =
exp (mx(t)), which is inspired by the idea of cascade mod-
els [57] and the single neuron spike response model [58].
We fit the parameter m directly from experimental data with
Poisson regression using the average spike counts within each
burst. The rate of the inhomogeneous Poisson process is con-
trolled by the average activity x(t) and m scales it to match the
spike counts in the recording.

Input-response of the model. To numerically analyze the
model responses to external inputs (Fig. 4d), we numerically
simulated the model for 6000s and discarded the first half of
the simulation. We then randomly choose 200 points with dif-
ferent x(t) and w(t) from the down-state (e.g. between bursts)
values and treat them as independent initial conditions. We
run 200 independent simulations with these selected initial
conditions with increasing external input (from 0 to 6). The
input is applied within nonlinearity, so the original equation
(Eq. 2) is modified as ϕ[−a(Jx(t) − w(t) + θ + µ)], where µ is
external input. The stimulation is applied to 10ms after which
we check if it evoked a burst. We repeat this process 100 times
with different random seeds for the external white noise.

B. State classification with summary statistics

We tested if we could identify the dynamic state of the
model from the bursting summary statistics. We sampled
150000 model parameters in the wide range (b [0;10], θ [-
10;10], log(τw)[0;14s] , σ [0;2]) and fit a set of linear classi-

Parameter Lower Bound Upper Bound
b 0.05 20.0
θ −10.0 15.0
τw 200.0 ms 200000 ms
σ 0.01 2.0

TABLE I. Prior values for parameters. The values of τw were sam-
pled in the log space log(200) to log(200000)

fiers (Linear Regression and Gaussian Naive Bayes) as well
as KNN-based classifier to predict the state based on the IBI,
CV of IBI, and burst duration (Fig. 1f). The classifiers were
trained on 80% of the data and tested the remaining 20%.

C. Simulation-based inference of the model parameters

Conditional density estimation To directly determine
how the bursting statistics map onto the model parame-
ters, we use a simulation-based inference approach. We
use the simulations to build a conditional density estimator
p(parameters|summary) that can be evaluated for other sum-
mary statistics without additional sampling [40, 41].

As a conditional density estimator we use a neuronal spline
flow [59] within the SBI-toolbox [60]. The model included 5
transformations and 50 features per layer.

We train the conditional density estimator using 300,000
samples from a wide prior of parameters (Table I). The esti-
mator allows us to obtain an approximate posterior probabil-
ity of the model parameters given a set of summary statis-
tics (p(parameters|IBI,CV of IBI, duration)). We evaluated
the predictive performance of the model and found that it
achieves excellent results for a wide range of summary statis-
tics (Fig. 11). We run the predictive checks analysis by eval-
uating the posterior probability of parameters for the experi-
mental data, simulating the model with these parameters and
comparing the resulting values (Fig. 11).

Fraction of states per observation. We compute the
changes in the fraction of states consistent with the experi-
mental data (Fig. 5 inset). For each summary statistic of the
experimental observation, we randomly sample 10,000 pa-
rameters from a posterior distribution for each observation,
pool these samples together, and calculate the fraction of pa-
rameters that fall into each state (bistable, excitable, and os-
cillatory).

D. Stability analysis of the rate model

We study the phase portrait of the model, using standard
stability analysis for the deterministic case [39]. The system
is given by

τẋ(t) = −x(t) +
A

1 + exp[−a(Jx − w + θ)]
, (5)

τwẇ(t) = −w(t) + bx(t). (6)
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We analyze the case where τ = 1 and J = 1. We start by
computing the fixed point and nullclines of the model. The
nullclines are given by

bx − w = 0, (7)

w −
1
a

(
aθ + ln

( w
A − x

))
= 0. (8)

The fixed points x∗,w∗ are given by the intersection of two
lines and can only be estimated numerically. The solutions are
typically 1 or 3 fixed points (Fig.1c). The stability of the fixed
points can be calculated by linearizing the system around the
fixed points:

Jac =
[
∂ẋ
∂x

∂ẋ
∂w

∂ẇ
∂x

∂ẇ
∂w

]
[x∗,w∗]

= (9)[
− 1
τ
+ Aa
τ
ϕ′(I) − Aa

τ
ϕ′(I)

b/τw −1/τw

]
[x∗,w∗]

, (10)

where the derivative of the sigmoid is ϕ′(z) = e−z

(1+e−z)2 and I =
−a(θ − w + x)). The signs of the eigenvalues of the Jacobian
determine the stability of fixed points,

λ± =
1
2

(
tr(Jac) ±

√
tr(Jac)2 − 4det(Jac)

)
, (11)

where tr is a matrix trace and det stands for the matrix de-
terminant. The determinant of the matrix is given by

det(Jac) =
1
τ · τw

[1 + (b − 1)Aa
(
ϕ′(I)

)
] (12)

and the trace reads

tr(Jac) = −
1
τw
+

1
τ

(Aaϕ′(I) − 1). (13)

By analyzing the fixed points and their stability we can find
that there are three types of dynamical states:

1. Stable single fixed point (either low or high).

2. Two stable, one unstable fixed points (bistability).

3. Oscillations.

We can find two bifurcations of the system, where it transi-
tions between states. The Saddle-node bifurcation indicates
a transition from one stable fixed point to two stable fixed
points and one unstable fixed point in-between. Its location
can be identified by the points where det(Jac) = 0. The Hopf
bifurcation is a transition from 1 stable fixed point to a limit
cycle and is indicated by tr(Jac) = 0. Note that as long as
τ ≪ τw the location of the bifurcations is not strongly affected
by the timescales of the system. In practice, we use numerical
bifurcation continuation using XPPauto [61] to obtain the bi-
furcation diagrams. Fig. 2a shows the bifurcation diagram for
θ and b.

E. Analytical description of the invariance in a piece-wise
linear equivalent model

To simplify the analysis, we will substitute the sigmoid
non-linearity with an equivalent piece-wise nonlinear func-
tion:

fpwl(x) =


0 for x ≤ θ − 4

a ,
1
8 aA(x + θ) + A

2 for θ − 4
a < x < θ + 4

a ,

A for x ≥ θ + 4
a .

(14)

For larger values of a, which controls the steepness of the
sigmoid function, this approximation becomes more accurate.
The nullclines are now given by

x + θ −
x − A/2
aA/8

= 0, (15)

w
b
− x = 0. (16)

We can also explicitly solve for the fixed points,

x∗ =
A(4 + aθ)

(aA(b − 1) + 8)
, (17)

w∗ = bx∗. (18)

We can find the low and high values of the adaptation (w−

and w+) using the discontinuity points of the non-linearity.
The adaptation variable would then be close to w− between
bursts and close to w+ during the bursts when the adaptation
timescale is much slower than the activity timescale. To do
that we solve the nullcline equation w = −x + fpwl(x). The
lowest and highest points of the rate (x− and x+ respectively)
are given by θ − 4

a and θ + 4
a . The values of the adaptation are

then

w− = 4/a + θ, (19)
w+ = −4/a + θ + A. (20)

Invariance in the deterministic case. Next, we analyze
the invariances in the model parameters using the lowest and
highest values of the adaptation variable. We assume that the
duration of up and down states are fixed and do not change
(e.g. like in the case of oscillatory dynamics without noise
cv(Tdown) = 0). Thus, we assume that the system jumps be-
tween two branches of the nullcline and the adaptation slowly
relaxes to w− and w+. Note that this is also a very good ap-
proximation of the original model when a is sufficiently large.
We then analyze only the slow variable, assuming that the in-
put x = x̄ thermalizes fast and it is thus fixed and equal to 0 in
the down-state and A in the up-state. The general solution of
the initial value problem (IVP) for w(t) is

w(t) = bx̄ + (w0 − bx̄)e−t/τw , (21)

where w0 is the initial condition. Now we can solve for both
b and τw as a function of θ, given fixed Tdown and Tup.
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The time it takes to relax to w− after the jump from the
upper branch is given by the IBI, therefore w(t = Tdown) = w−.
Thus, we can now explicitly solve for τw

τw =
−Tdown

log( w+−bx̄
w−−bx̄ )

. (22)

During the down state bx̄ is approximately zero and given
a fixed Tdown the τw therefore depends only on w− and w+,
which are functions of θ as defined above. Thus, τw is propor-
tional to the duration of the down state (see Fig. 9b). We can
further simplify the equation and write it as

τw =
Tdown

log(1 + aA−8
4+aθ )

. (23)

Now we can perturb log(1 + u), where u = aA−8
4+aθ up to the

first order and arrive at the equation that defines the depen-
dency between θ and τw

τw ≈
(aθTdown)

aA − 8
+

aATdown

2(aA − 8)
. (24)

We apply a similar approach and fix the burst duration as
Tup. The input is then x̄ = A and that w(t = Tup) = w+. Eq. 21
becomes

w+ = bA + (w− − bA)e−Tup/τw . (25)

We substitute τw with Eq. 23 and get a curve of the depen-
dency between b and θ given fixed Tup and Tdown (plotted in
Fig. 9a)

bA = −
4
a
+ A + θ +

−8/a + A

−1 +
(
−4+a(A+θ)

4+aθ

)Tup/Tdown
. (26)

We asymptotically expand this equation up to the zero order
with the Laurent series and obtain

b ≈ θ
Tdown + Tup

ATup
+

Tdown + Tup

2Tup
, (27)

from which we can approximate θ as

θ ≈
ATup

Tup + Tdown
b −

A
2
. (28)

Thus, the slope of the dependency between the excitability
and adaptation is α = ATup

Tup+Tdown
.

II. EXPERIMENTAL METHODS

MEA recording of networks of mouse cortical neurons.
The neurons of the mouse cortex (E18) were dissected and
cultured according to previously published protocols [62].
The local Animal Care and Use Committee approved ani-
mal protocols for primary cell cultures. Cortical cultures
were seeded on 24-well MEA plates (Multi Channel Systems
MCS GmbH, Reutlingen, Germany) at the seeding density of

around 5000 neurons/mm2. Each well contained 12 gold elec-
trodes. The medium was changed every 3 days.

The spontaneous network activity was recorded at 17
and 18 DIV in the recording medium containing 140mM
NaCl, 4.2mM KCl, 2mM CaCl2*2H2O, 1mM MgSO3*7H2O,
0.5mM Na2 HPO4, 0.45mM, NaH2PO4, 5mM HEPES and
10mM Glucose (pH was controlled to be within 7.35-7.45
range by adding NaOH). After the MEAs were transferred
to the amplifier, we let the network stabilize for 10 minutes.
The recordings were done while keeping the temperature at
37°C. The raw signal was recorded for 20 minutes at a sam-
pling rate of 10 kHz and was filtered by a fourth-order low-
pass Butterworth filter with a cutoff frequency of 3500 Hz,
and a second-order high-pass Butterworth filter with a cutoff
frequency of 100 Hz. Spike detection was performed via the
noise threshold method provided by the Multi-well Analyzer
Software (Multi Channel Systems MCS GmbH, Reutlingen,
Germany). For each recording, the default algorithm was set
to calculate the standard deviation from 50 different 100 ms
long segments of raw data, and the threshold for spike de-
tection was set at ±5 times the standard deviation level. For
a subset of wells, we also blocked the inhibitory activity by
adding 40µM of bicuculline, this data was not included in the
analysis.

Ca-recording of networks of primary rat hippocampal
neurons under changing concentrations of KCl. Primary
cultures preparation. All procedures were approved by the
Weizmann Institutes Animal Care and Use Committee. The
dissections and cell dissociations were done according to es-
tablished protocols [63, 64]. Hippocampal neurons were ob-
tained from Winstar rat embryos at E19.

Brains from embryos were dissected on ice in L-15 medium
with 0.6mg/ml D-glucose and 20 µg/ml gentamycin. Hip-
pocampi were dissociated in papain solution (papain 100
units, DNAse 1000 units, L-Cystein 2 mg, NaOH 1M 15 µL,
EDTA 50 mM 100 µL, CaCl2 100 mM 10 µL, dissection so-
lution 10 mL) at 37C. After 20 minutes of incubation at 37C
with papain, the solution was replaced with 10 mL of plating
medium (MEM without glutamine supplemented with 0.6%
glucose, 1% GlutaMAX, 5% Horse Serum, 5% Fetal Calf
Serum and 0.1% B27) with 25 mg of trypsin inhibitor and
25 mg of Bovine Serum Albumin, that effectively stops tis-
sue dissection. The resulting tissues were titrated with glass
pipettes after which the cells were counted with an automatic
cell counter.

The suspension was then seeded with a density of around
5000 neurons/mm2 on glass coverslips coated with poly-L-
lysine placed in 24-well plates. The plates were incubated
for half an hour in a humidified, 37°C and 5% CO2 incubator
to allow the attachment of neurons. Finally, 2 mL of serum-
free medium (Neurobasal, B27 4%, GlutaMAX 1%, and FCS
1%) were added and the cultures were placed back into the
incubator. At 4 DIV the glial proliferation was stopped by
adding in the medium 20 µg/mL 5-fluoro-2-deoxyuridine and
50 µg/mL uridine (Sigma, Israel). Cultures were fed every
day, replacing 0.5 mL of the old medium with a new feeding
medium containing 90% MEM and 10% of inactivated Horse
serum.
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Ca-imaging. Recordings were done between 14 and 28
DIV. The recordings were done in an external medium (EM),
containing 130mM NaCl,4mM KCl, 2mM CaCl2, 1mM
MgCl2, 10mM HEPES, 10mM Glucose, 45mM Surcose. On
the recording day, a coverslip with culture was transferred to
a petri dish with 1mM of the EM with 4µL Fluo-4. The cul-
ture was then incubated in darkness for 1 hour, after which the
medium was changed to 2ml of EM. Before imaging the Perti
dish was mounted in Zeiss Axiovert 135TV. The images were
taken every 0.0546 s. To analyze population activity, we av-
eraged the fluorescence from the whole field of view (which
typically contained about 30-200 neurons).

KCl changes. In addition to standard EM (which contains
KCl 4mM), we prepared a set of EM with modified concen-
trations of KCl: 1, 2.5, 5.5, 7, and 10mM. After the initial 10-
minute recording with the baseline concentration, we changed
the medium to a medium with a modified concentration. We
let the networks adjust for 10 minutes and then recorded an-
other 10 minutes of spontaneous activity in the new concentra-
tion of KCl. After that, we changed the medium again, back
to the baseline condition. We typically start with a baseline
of 4mM, but for a small number of validation experiments,
we started with higher or lower concentrations. For the final
averages, these data were pooled together.

III. DATA ANALYSIS

A. Ca-recording

To analyze the population bursts recorded with Ca-imaging,
the fluorescent imaging data were averaged over the whole
recording field to obtain a time series. We validated the
recordings manually and excluded those that did not show
population bursts in the control conditions. Then we removed
the slow fluctuations of the baseline by fitting a polynomial of
the 4th degree to the data and verifying the prediction of the
fit from the raw data. We smooth the time series by applying
a low-pass filter (digital Butterworth filter of the third order
with 1Hz cut-off frequency).

Burst onsets were detected where the derivative of the de-
trended signal crosses a threshold of 0.5 a.u. for at least two
consequent points. We then check if the maximum amplitude
within the burst exceeds 3 std of the burst baseline (calcu-
lated during 1s before the identified burst onset) and discard
the events if it does not. The end of the burst for Ca-data is
computed as the decay of the trace to 25% of its maximum,
similarly to [24]. The burst detection and duration was then
validated by visual inspection.

The burst summary statistics were computed from the ex-
tracted bursts. Note that for computing the average inter-burst
interval, the duration is taken from the end of one burst to the
onset of the next one.

B. MEA data

Datasets Additionally to our MEA recording at 17 and
18 DIV, we analyzed several open datasets of MEA record-
ings for primary cell cultures [25] as well as hPSC-
derived neuronal cultures [21, 42], that include both em-
bryonic PSC and induced PSC. The data for mice corti-
cal and hippocampal primary cell cultures were accessed
from http://github.com/sje30/g2chvc. Recordings
of the activity of hiPSC-derived and rat cortical neu-
rons were downloaded from https://gin.g-node.org/
NeuroGroup_TUNI/Comparative_MEA_dataset/. We
used only the data recorded across development from 3 to 66
DIV: hPSC_MEA1,hPSC_MEA2,Rat_MEA1. We used the spike
times detected by the authors as described in the original pub-
lications [25, 42].

Burst detection We first exclude the recordings that did not
have a clear bimodal distribution of the activity. To this end,
we check if the bimodality coefficient [65] of the spike count
across all channels in 200ms bins is above 0.4.

Next, we identify the bursts by combining the spike times
from all channels and detect the events based on the mini-
mum inter-spike interval, burst duration, number of spikes in-
side a burst, and the minimum inter-burst interval. The al-
gorithm that we use is inspired by the minimum interval al-
gorithm (MI), which has been shown to robustly detect burst
[56, 66]. We first analyze all inter-spike intervals and detect
the times when the inter-spike interval is below the threshold
of the mean inter-spike interval for the recording. Then we
combine all bursts that are closer than a minimal IBI, after
which we discard all the events that are shorter than the mini-
mum burst duration.

The inter-spike interval threshold was set for each record-
ing to the mean of the inter-spike across all channels (but not
below 50ms or greater than 500ms). The minimum number
of spikes inside a burst was 45, the minimum burst duration
was 50 ms, minimum inter-burst interval was 500 ms. For
the hPSC dataset, [42] we adjusted the minimum number of
spikes in a burst to 100ms and the minimum possible inter-
spike interval threshold to 20ms which allowed us to separate
longer better bursts. The detection for all datasets was vali-
dated by visual inspection.
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Métens, and Pascal Monceau. Understanding the Generation of
Network Bursts by Adaptive Oscillatory Neurons. Frontiers in
Neuroscience, 12, 2018.

[31] A. Gal, D. Eytan, A. Wallach, M. Sandler, J. Schiller, and
S. Marom. Dynamics of Excitability over Extended Timescales
in Cultured Cortical Neurons. Journal of Neuroscience,
30(48):16332–16342, December 2010.

[32] Maurizio Mattia and Maria V. Sanchez-Vives. Exploring the
spectrum of dynamical regimes and timescales in spontaneous
cortical activity. Cognitive Neurodynamics, 6(3):239–250, June
2012.

[33] Daniel Levenstein, György Buzsáki, and John Rinzel. NREM
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Marcel Nonnenmacher, Kaan Öcal, Giacomo Bassetto, Chai-
tanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P
Vogels, David S Greenberg, and Jakob H Macke. Training deep
neural density estimators to identify mechanistic models of neu-
ral dynamics. eLife, 9:e56261, September 2020. Publisher:
eLife Sciences Publications, Ltd.

[41] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The fron-
tier of simulation-based inference. Proceedings of the National
Academy of Sciences, page 201912789, May 2020.

[42] Fikret Emre Kapucu, Andrey Vinogradov, Tanja Hyvärinen,
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FIG. 7. Effective excitability estimated from the average summary statistics analytically closely follows the slope of the dependency between
excitability and adaptation strength (numerics) estimated from the posterior samples. In this plot we uniformly sampled summary statistics
(IBI between 3 and 20s, burst duration between 1 and 3s, and CV of IBI between 0,1) and then sampled from the corresponding posterior
distributions. The numerical effective excitability was estimated as the slope of the best-fitting line for the θ and b samples. Analytical values
were computed as ATup/(Tdown + Tup).

FIG. 8. Piecewise linear approximation ( fpwl(x)) of the original sigmoid ( f (x)).
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FIG. 9. The invariance of bursting activity in an oscillatory regime without noise. a) Solution of the adaptation strength of a function of θ for
different fixed values of IBI and 2.5s burst durations b) Solutions for the τw as a function of θ. c) Examples of traces with the IBI=10s and low
noise (σ = 0.1)
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FIG. 12. Timescale and the noise intensity for the inferred model parameters for cultures of mouse primary neurons from cortex, hippocampus
(>14DIV)[25] and hPSC (>31DIV) [42] of Fig. 3. Here, we extract the timescales by computing the slope of the dependency between b and
τw from the fitted posteriors. We could not reject the null hypothesis of the mean equality between the timescales of cultures types (One-way
ANOVA F(2,375) = 2.206, p=0.11). The noise intensities were significantly different between all groups (One-way ANOVA F(2,375) = 115.6,
p < 0.00001, pairwise ind. t-test ctx vs hpc t-val = 8.8, p < 0.00001; ctx vs hiPSC t-val = 9.158 p < 0.00001; hpc vs hiPSC t-val=8, p <
0.00001.)
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FIG. 13. Developmental profiles of the population bursting development in hPSC and primary in vitro networks of rat primary cortical neurons
from the same dataset [21, 42]. hPSC are the same as in Fig. 4 (shaded area - s.e.m.)
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FIG. 15. The effective excitability sets the response properties of neuronal networks. a) Area under the curve (AUC) of responses (computed
with trapezoid rule) for increasing effective excitability and different levels of the intrinsic drive (θ). b) Leftward shift in the response proba-
bility in models with increasing effective excitability(α).
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FIG. 16. Examples of average Ca-traces in experiments with different concentrations of KCl and return to the baseline condition.
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