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Abstract

Reservoir computing is a powerful computational framework
that is particularly successful in time-series prediction tasks.
It utilises a brain-inspired recurrent neural network and al-
lows biologically plausible learning without backpropaga-
tion. Reservoir computing has relied extensively on the self-
organizing properties of biological spiking neural networks.
We examine the ability of a rate-based network of neural os-
cillators to take advantage of the self-organizing properties
of synaptic plasticity. We show that such models can solve
complex tasks and benefit from synaptic plasticity, which in-
creases their performance and robustness. Our results further
motivate the study of self-organizing biologically inspired
computational models that do not exclusively rely on end-
to-end training.

Introduction
Reservoir computing is a computational framework that
combines a recurrent network of interacting units (reservoir)
with a single trainable layer that interprets the reservoir’s ac-
tivity. Inputs are given to the reservoir, whose dynamics
transform them into more interpretable, high-dimensional
outputs processed by a trainable linear layer (Schrauwen
et al., 2007). Different types of reservoirs have been studied
over the years (Tanaka et al., 2019), since their energy effi-
ciency and easy training make them attractive as a compu-
tational paradigm. Moreover, their study can offer insights
into more fundamental questions about the nature of compu-
tation.

Given the prominence of biological neuronal networks as
the standard for computational efficiency, biologically in-
spired reservoirs have been widely studied, mostly in the
form of liquid state machines (LSM) that utilise a recur-
rent spiking network as a reservoir (Maass, 2010). One of
the primary features of such networks is their ability to self-
organize through a combination of various forms of synaptic
plasticity (Effenberger et al., 2015; Raghavan et al., 2020).
This ability has been shown to significantly boost the com-
putational capabilities of LSMs (Lazar et al., 2009).

Here, we examine whether the self-organizing effect of
biological plasticity can be extended to a rate-based neu-
ral reservoir. Specifically, networks of coupled oscillators

representing neural populations have been proposed as an
computationally tractable alternative to large simulations of
spiking networks (Giannakakis et al., 2020). Moreover, net-
works of oscillators have been suggested as a possible can-
didate for an efficient reservoir (Yamane et al., 2015).

Figure 1: A schematic of the network. The reservoir con-
sists of a network of sparsely connected Wilson-Cowan os-
cillators and its output is processed by a linear readout layer.

To uncover the effects of self-organization in such a
model, we use as a reservoir a network of Wilson-Cowan
oscillators. This network is a well-known model, whose dy-
namical properties have been widely studied (Ahmadizadeh
et al., 2016; Maruyama et al., 2014). We investigate how
the introduction of local inhibitory plasticity (Vogels et al.,
2011), which has been shown to have a self-organizing effect
in such networks (Hellyer et al. (2014)), affects the model’s
performance in a demixing task.

Model & Performance
Our reservoir is a network of 300 Wilson-Cowan oscillators
with sparse connections (0.95 sparsity) between the excita-
tory populations. The parameters of each oscillator are the
same, with the exception of the timescale τ that is sampled
from a log-normal distribution. The input signal is generated
by summing up two sinusoidal waves of different frequen-
cies, amplitude and phases. The aim of the network is to
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A. Model Function B. Loss Comparison

Figure 2: Plasticity improves performance of the reservoir A: The input and output signal compared with the target signal. The
network reconstructs the target fairly accurately. B: A comparison of the model’s loss for connectivity matrices drawn from
Normal distribution with varying µ and σ. With self-organization by plasticity, the network performs similarly well for all
connectivities, while without plasticity, the loss becomes very large outside a small range of distributions

reconstruct the higher-frequency sinusoidal wave, similar to
a task that has been used to test reservoir models previously
Otte et al. (2016). The signal is fed into a set of read-in
neurons in the reservoir and the read-out is generated from a
trainable linear read-out layer (Figure 1).

The read-out weights are trained via gradient descent us-
ing the mean square error (1/N ·

∑N
i (yi− ŷi)2) between the

target and output sequences. All other connection weights in
the reservoir are fixed and sampled from a Normal distribu-
tion. The model is written and trained using the PyTorch li-
brary. Before training, we allow the network to self-organize
via an internal plasticity mechanism that adjusts the internal
inhibitory to excitatory (I → E) connection of each Wilson-
Cowan node, without affecting the network’s global connec-
tivity. The strength of the I → E connection is modified
according to a classic plasticity rule (Vogels et al., 2011):

∆wie = c · I · (E − ρ0), (1)

that adjusts inhibition to keep the average activity of the ex-
citatory population (E) close to a set target rate (ρ0). This
adjustment prevents the network’s nodes from converging to
a fixed point and instead keeps them oscillating throughout
the training period. The target rate for each node is sampled
from a uniform distribution: ρ0 ∼ U(0.1, 0.25).

The network manages to accurately reconstruct the target
signal (Figure 2A). The performance of the network strongly
depends on the size of the reservoir and the distribution of
the timescale parameter τ (larger reservoir and wider distri-
bution improve performance). Additionally, when the net-
work is not tuned via synaptic plasticity, the distribution of
inter-node connection weights strongly affects the network’s
performance (wider distributions lead to diminished perfor-
mance). However, the inclusion of inhibitory tuning allows

the network to self-organize to a balanced state. This, in
turn, enables the network to be agnostic to its inter-node
connectivity and leads to near-optimal performance for all
connectivity parameters (Figure 2B).

Discussion
The state-of-the-art machine learning techniques rely on
end-to-end training and precisely defined objective func-
tions. In contrast, biological learning systems utilise
distributed, energy-efficient, and robust computational
paradigms, as well as the ability to self-organize without
explicit training. These features are increasingly sought af-
ter in artificial systems both in software and hardware im-
plementations, and therefore, frameworks like reservoir and
neuromorphic computing are becoming more mainstream.

Here, we introduce a reservoir of neural oscillators and
show that it is capable of performing complex tasks. Ad-
ditionally, we demonstrate that the ability to self-organize
via a biological plasticity mechanism improves its robust-
ness and performance. Further research into the dynamics
and behaviour of such systems is needed in order to fully
understand their computational capabilities. A better under-
standing of the function of biological reservoirs might of-
fer an alternative path to studying biological computation as
well as developing novel learning algorithms.
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