
Modular Growth of Hierarchical Networks: Efficient, General, and Robust
Curriculum Learning

Mani Hamidi1,2,∗, Sina Khajehabdollahi1, Emmanouil Giannakakis1,2, Tim J. Schäfer 1,2,
Anna Levina1,2, Charley M. Wu1,2

1Department of Computer Science, University of Tübingen, Tübingen, Germany
2Max Planck Institute for Biological Cybernetics, Tübingen, Germany

∗mani.hamidi@uni-tuebingen.de

Abstract

Structural modularity is a pervasive feature of biological neu-
ral networks, which have been linked to several functional
and computational advantages. Yet, the use of modular ar-
chitectures in artificial neural networks has been relatively
limited despite early successes. Here, we explore the perfor-
mance and functional dynamics of a modular network trained
on a memory task via an iterative growth curriculum. We
find that for a given classical, non-modular recurrent neural
network (RNN), an equivalent modular network will perform
better across multiple metrics, including training time, gener-
alizability, and robustness to some perturbations. We further
examine how different aspects of a modular network’s con-
nectivity contribute to its computational capability. We then
demonstrate that the inductive bias introduced by the modu-
lar topology is strong enough for the network to perform well
even when the connectivity within modules is fixed and only
the connections between modules are trained. Our findings
suggest that gradual modular growth of RNNs could provide
advantages for learning increasingly complex tasks on evo-
lutionary timescales, and help build more scalable and com-
pressible artificial networks.

Introduction
From bacteria (Andrews, 1998), to brains (Sporns and Bet-
zel, 2016), to man-made artifacts (Lake et al., 2015), many
things are composed of modular components, specialized
for different purposes and capable of being recombined in
distinct configurations to solve new problems. In cogni-
tive science, modularity (Fodor, 1983) has played an im-
portant role in understanding intelligent behavior as compo-
sition of modular, symbolic representations (Rubino et al.,
2023; Zhou et al., 2024) while evolutionary accounts have
explored how selection pressure towards reducing connec-
tion costs may favor modular solutions (Clune et al., 2013).
By constraining the search space (Happel and Murre, 1994)
and favoring more computationally efficient solutions (Yuan
et al., 2023), modular architectures (Amer and Maul, 2019)
offer a complementary and more biologically plausible ac-
count of intelligence (Cosmides and Tooby, 1997), at a time
when current trends in deep learning have pursued scale at
all costs (Shen et al., 2023).

Taking inspiration from the modular duplication of en-
tire body parts during gene duplication events (Garcia-
Fernàndez, 2005), we explore the functional utility of modu-
lar growth in adapting a recurrent network to a memory task
of gradually increasing complexity. We find that coordina-
tion of modular growth together with a learning curriculum
facilitates a surprising array of advantages, both in terms of
performance and costs.

Specifically, we focus on the domain of multi-timescale
signal processing (Bathellier et al., 2008; Panzeri et al.,
2010; Safavi et al., 2023). In tasks such as speech recog-
nition (Graves et al., 2013), time-series prediction (Chung
et al., 2014; Torres et al., 2021), and navigation (Mor-
cos and Harvey, 2016), both biological and artificial agents
commonly need to represent and remember relatively long
timescales in the underlying network dynamics. In artifi-
cial neural networks, such dynamics can arise not only via
the training of recurrent connectivity, but also by explicitly
training the timescales of individual neurons (Perez-Nieves
et al., 2021; Tallec and Ollivier, 2018; Quax et al., 2020;
Yin et al., 2020; Fang et al., 2021; Smith et al., 2023).
Trainable timescales have been linked with improved perfor-
mance for rate- (Tallec and Ollivier, 2018; Quax et al., 2020)
and spiking networks (Yin et al., 2020; Fang et al., 2021;
Perez-Nieves et al., 2021). However, recent work has sug-
gested that greater reliance on connectivity, rather than train-
able timescales, is associated with superior performance
and robustness of RNNs in similar memory tasks (Khaje-
habdollahi et al., 2024). Thus, these current debates sug-
gest that the interaction between trainable and connectivity-
based mechanisms, together with their dependence on archi-
tectural and training decisions remains relatively poorly un-
derstood, even in simple networks performing rather trivial
tasks.

One such architectural distinction between artificial and
biological networks is the presence of modular topologies
(Litwin-Kumar and Doiron, 2012; Chaudhuri et al., 2014;
Zeraati et al., 2023; Shi et al., 2023), which organize vari-
ous neuronal types into higher level clusters with different
timescales (Greengard, 2001) and specific local connectiv-

ity patterns (Schaub et al., 2015). In particular, hierarchi-
cal structures in the cortex are associated with a gradual in-
crease in intrinsic timescales (Murray et al., 2014; Manea
et al., 2022) that has been linked to the computational re-
quirements of the tasks performed by different cortical re-
gions (Murray et al., 2014).

Although artificial hierarchical networks have been used
for temporal tasks in the past (El Hihi and Bengio, 1995),
they only explored shallow and static hierarchies that lacked
curriculum-based growing mechanisms. Thus, to our knowl-
edge, the role of hierarchical structure in accommodating the
emergence of longer timescales has yet to be investigated.

Here, we address this gap by comparing standard RNNs
(non-modular) to growing modular networks, using mem-
ory tasks with increasing complexity (Fig. 1). Building on
the success of different curriculum-based training strategies
that support the learning of longer timescales (Khajehabdol-
lahi et al., 2024), we additionally introduce module-level
duplicative growth of the network at every step along the
curriculum. This modular strategy is loosely reminiscent of
growth over evolutionary timescales that gradually accom-
modate adaptation to more complex tasks and environments
(Lui et al., 2011). Our networks achieve superior perfor-
mance and robustness, in line with other studies that use
neural growth models to train RNNs in a different domain
(Najarro et al., 2023).

Our findings suggest that the well-calibrated growth of
structured networks can significantly reduce the number of
trainable parameters and training steps required to solve
complex temporal tasks.

Methods
We train non-modular and modular networks on the N -
parity task at increasing complexity levels N and compare
their performance, robustness, and learning dynamics. Mod-
els are trained using back-propagation-through-time with a
stochastic gradient descent optimizer, a cross-entropy loss
function, and curriculum learning.

Task
An N -parity task is a memory task that is commonly used
to assess the capabilities of recurrent network architectures
(Stork and Allen, 1992; Hohil et al., 1999). The task re-
quires the accurate retention of a sequence of binary digits
to perform a modulo 2 summation over the last N digits in
the sequence. Therefore N captures the complexity of the
task. The input is a random binary sequence S with length
L chosen uniformly from the interval {N+2, 4N}, with one
bit provided to the network at each time step. The network
must output the binary sum (XOR) of the last N digits. To
update the output at every time step, the network must learn
to store some representation of the values and order of the
last N digits in memory.

1

Non-Modular Modular

0
1

0
0

1
1

0
1

1
0

0

tim
e

N = 2

N = 3

N = 4

1

0

1

N = 2

N = 3

N = 4

1

0

1

0
1

0
0

1
1

0
1

1
0

0

tim
e

Input Output Input
Output0

1
0

0
1

1
0

1
1

0
0

tim
e

N = 2

N = 3
1

0

Input Output N = 2

N = 3

1

0

0
1

0
0

1
1

0
1

1
0

0

tim
e

Input
Output

0
1

0
0

1
1

0
1

1
0

0

tim
e

N = 2
1

Input Output N = 2
1

0
1

0
0

1
1

0
1

1
0

0

tim
e

Input
Output

Nmax = 2

Nmax = 3

Nmax = 4

Curriculum 
Step 1

Curriculum 
Step 2

Curriculum 
Step 3

Figure 1: Network Structures. Non-modular networks con-
sist of a fixed number of neurons (M = 20, 54, 91, 128),
with connections that are retrained at each curriculum step.
After a given accuracy is reached for a task of length N ,
a new readout head (consisting of 2 neurons) for N + 1 is
added and the network is retrained for all previous N . In
contrast, the modular network adds a much smaller RNN
module (Mm = 5, 10, 15, 20) for every readout head that is
added in the curriculum. Thus, each readout head is attached
to a separate RNN module, rather than one large reservoir as
in non-modular networks.

Although simple, this task provides a foundation for test-
ing the representation learning and memory capacities of ar-
tificial neural networks, while simultaneously allowing us
to control the difficulty of the task 1 bit at a time using N .
Furthermore, multiple N -parity tasks can be computed for
a single sequence, allowing the possibility of training con-
current tasks/readout layers on the same inputs. This con-
current training is used to encourage more universal features
that can be shared between the different tasks and to prevent
catastrophic forgetting.

The success criterion for completing task N is therefore
defined as jointly satisfying i) > 98% accuracy on task N
and ii) maintaining an average of > 98% accuracy on all
previous tasks. Accuracy is reported as an average over mul-
tiple tests, with random chance yielding 50%. We report net-
work performance using Nsolved which describes the largest
task that it was able to solve after 60 epochs.

0 20 40 60
Epoch

0

20

40

60
⟨N

so
lv

ed
⟩

(a)

20000 40000
of Parameters

⟨N
so

lv
ed

⟩ a
t E

po
ch

 6
0

(b)

Modular
Non-Modular

0 2 4 6
Task Generalization (K)

60

80

100

Ac
cu

ra
cy

(c)

Modular
Non-Modular

5 10 15 20
Modular

20 54 91128
Non-Modular

Figure 2: Performance comparison of modular and non-modular architectures with different numbers of neurons (color bars)
allocated to their recurrent processing unit. For modular networks, the number of neurons is reported per module. For non-
modular networks, the number indicates the total number of neurons in the single recurrent core. These numbers were chosen
to allow for a comparable total number of learnable parameters for a given task difficulty N . (a) Learning curves show that
modular architectures with sufficient (> 5) neurons can solve a new task at every epoch while the non-modular networks plateau
in their learning ability. (b) Pareto frontier of performance after 60 training epochs, shows that the modular architecture always
achieves better performance for the same number of parameters. Note that the saturation of performance at Nsolved = 60 for
the modular architecture is due to the choice of training epochs. (c) Generalization performance of networks trained on a task
difficulty of N and then tested on tasks of N + K. Accuracy is measured as the percentage of correct trials and error bars
indicate the standard deviation. Results are averages over 4 non-modular and 3 modular networks, and errorbars show STD.

Networks
We use simple rate neurons with a trainable time constant τ
whose activity is defined by:

ri(t) =

(
1− ∆t

τi

)
· ri(t−∆t) +

∆t

τi
· [Ct]α (1)

Ct is the input at each timestep t and the non-linearity [·]α is
the leaky ReLU function with negative slope α, given by:

[x]α =

{
x, x ≥ 0
α · x, x < 0.

(2)

During learning, we train both the network connectivity (re-
current and feedforward) as well as the individual neuron
timescales τi. The trainable timescale τi has a minimum
value of 1 indicating a neuron that reacts only to the shortest
timescales (i.e., the current input Ct), whereas larger values
integrate information from longer timescales in the past.

Non-modular networks. In non-modular networks
(Jaeger, 2002), the input at each timestep t for neuron i is:

Ct =

M∑
j ̸=i

WR
ij · rj(t−∆t) +W I

i · S(t) + bi. (3)

Here, WR is the recurrent connectivity, W I is the feedfor-
ward input connections, S(t) is the input signal, bi is the
neuron bias, and time discretization ∆t = 1.

The non-modular networks follow the multi-head curricu-
lum in (Khajehabdollahi et al., 2024): At the first curriculum

step, a single linear readout head is trained to solve the task
for N = 2. Upon successfully completing task N , a new
readout head is added and is trained to solve the N + 1-
parity task. Previous readout heads continue to be trained
after every step in the curriculum. Thus, at the mth step of
the curriculum, the network has m readout heads solving the
task for N = 2, . . .m− 1.

Modular networks. In modular networks, each neuron re-
ceives input from the other neurons of the same module, and
for modules m > 1, neurons also receive input from a feed-
forward connection from the previous module m− 1:

Cm
t =

Mm∑
j ̸=i

WR
ij · rmj (t−∆t)

+

Mm∑
k

WFF
ik · rm−1

k (t−∆t)

+ W I
i · S(t) + bi

(4)

where WFF is the feed-forward connectivity from the pre-
vious module and rm−1

k (t −∆t) is the activity of neuron k
in module m− 1 from the previous timestep. Mm indicates
the number of neurons in each module, which is fixed to be
one of Mm ∈ [5, 10, 15, 20] in our experiments.

For training the modular networks, we follow a growing
curriculum as follows: Starting with a single module with
a small population (5, 10, 15, or 20 neurons), we train a
linear readout for N = 2. Then, at each curriculum step,
we add a new module and readout head for each new N .

The connectivity of the new module is a copy of the cor-
responding (feedforward and recurrent) connectivity for the
N − 1 module and receives feedforward input from it. Thus
each module is specialized to solving the task for a single N .
At each curriculum step, we freeze all network connections
for all modules except the last and train only the recurrent
and feedforward connections (input from sequence and in-
put from previous module) of the last module.

Timescale Estimation
Apart from the trainable parameters τi that define the
timescale of each neuron explicitly, we also compute the
effective timescale of a neuron, which is influenced by its
intrinsic trained τi and the extrinsic modulation of its ac-
tivity through its connections with the rest of the network.
We determine this network-mediated effective timescale for
individual neurons by calculating the lagged autocorrela-
tions (AC) of their activity during task performance, follow-
ing previously developed methods (Khajehabdollahi et al.,
2024). The AC of each neuron is then modeled with an ex-
ponential function featuring one or two timescales, selecting
the best-fit model based on the Akaike Information Criterion
(Akaike, 1974). To avoid estimation bias, we utilize long
time series (105 time steps) of activity (Zeraati et al., 2022).

Robustness
We evaluate robustness by measuring the accuracy of the
network after perturbing one of its three trained parame-
ter groups, WR, WFF or τ . We define the magnitude of
the perturbation εW as a function of the magnitude of the
weights (Wu et al., 2020):

W̃ = W + εW
ξW

||ξW ||
||W || (5)

where ξW ∼ N (0, In×n) and || · || represents the Frobenius
norm. This normalization allows for comparable amounts
of perturbation across networks of different types and sizes.
We also only perturb τi in positive direction to avoid τ < 1.

Results
Our findings are divided into two main sections. In the
first part, we demonstrate that modular networks follow-
ing an iterative growing curriculum outperform equivalent
non-modular RNNs in terms of task performance, training
speed, generalizability, and robustness to perturbation of
their learned connectivity. In the second part, using per-
turbation and ablation techniques, we investigate how dif-
ferent aspects of modular networks (feedforward vs. recur-
rent connectivity and trainable vs. effective single-neuron
timescales) contribute to their computational capabilities.

Modular vs. Non-Modular Networks
Performance and Generalization We first compare a set
of modular networks with different module sizes (Mm =

10−2 10−1 100

Pert. of
connections εW

0

20

40

60

N
 so

lve
d

(a)

10−2 10−1 100

Pert.of
timescale ετ

(b)

20

54

91

128

No
n-

m
od

ula
r s

ize

5

10

15

20

M
od

ule
 si

ze

Figure 3: Weight perturbations degrade performance in
both modular and non-modular networks of different sizes
(colours). (a) Modular networks are more robust to pertur-
bation of connections (modular networks: feedforward and
recurrent weights). (b) Non-modular networks are more ro-
bust to the perturbation of single-neuron trained timescales.

5, 10, 15, 20) against a set of non-modular networks (M =
20, 54, 91, 128) with an equivalent number of trainable pa-
rameters (at N = 30). Performance is calculated as the aver-
age task difficulty solved, Nsolved, both as a function of train-
ing time (Fig. 2a) and the number of parameters (Fig. 2b).

Overall, we find that all modular networks reach a higher
task difficulty (Nsolved) than the corresponding non-modular
networks (Fig. 2a). Except for the smallest modular net-
works (Mm = 5), all modular networks maintain a steady,
linear progression through the curriculum, solving every
task after a single epoch of training. As an extreme test of
the limits of the modular network, we were able to reach
a maximum of N = 200 in one network before ending the
simulation, with even greater capabilities being theoretically
possible given sufficient training time. The non-modular
networks, on the other hand, plateau much earlier in their
progression through the curriculum. Thus, for a fixed num-
ber of trainable parameters, our results suggest there is a
modular architecture that is capable of solving more com-
plex tasks with the same amount of training.

We also explore the impact of a limited budget for learn-
able parameters as an alternative evaluation of the cost-
benefit trade-off between two architectures. Figure 2b shows
the Pareto frontiers of the architectures after 60 epochs, in-
dicating that a modular architecture can solve a task with
fewer parameters than a non-modular network.

Finally, we test generalization performance on networks
of size Mm = 15 and M = 91, by training them to
Nsolved = 10 and then test their ability to solve N =
Nsolved + K, for K = 1, 2, For modular networks,
the N = 10 module is now tested for solving N = 10 +K,
while the non-modular network is tested on a new read-out
head for N = 10 + K. We only allow 10 epochs of ad-
ditional training on the new task. The results are shown in
Figure 2c, where although performance decays with K for

both types of networks, modular networks consistently reach
a higher accuracy compared to non-modular networks, thus
demonstrating superior generalization.

Robustness to Perturbations. Next, we tested the robust-
ness of both network architectures to perturbations of con-
nectivity weights (Fig. 3a) and trained timescale parameters
(Fig. 3b). The perturbations were proportional to the mag-
nitude of the weights of the layer being targeted (Eq. 5). For
different perturbation levels, we measure the network per-
formance via the number of tasks that the network is still
able to solve with accuracy > 0.9.

Overall, Figure 3 shows the degradation of performance
as a function of the size of the perturbation on the connec-
tions (both recurrent WR

ij and feedforward WFF
ij in the case

of the modular networks) and the timescale parameters (τi)
of the network. Modular networks not only have better ini-
tial performance but are also more robust against connectiv-
ity perturbations (Fig. 3a). This is visible in the later inflec-
tion point, reflecting how larger perturbations are required
to degrade the performance of modular networks. However,
modular networks are more sensitive to the perturbation of
time-scale parameters (Fig. 3b). A special case is modular
networks with Mm = 5 that appear to be more sensitive
to both perturbations than their larger counterparts. For all
other cases, the number of neurons does not significantly
impact the robustness of either network type. So the inflec-
tion point of degrading performance is an inherent feature of
network architecture. In sum, modular networks are signif-
icantly more robust against connectivity perturbations, but
are more sensitive to perturbation of time-scale parameters.

Functional Analysis of Modular Networks
Trained vs. Effective Timescales. To better understand
the increased sensitivity of modular networks to timescale
perturbations, we examine the mechanism by which long
timescales emerge in the networks. We do so by examining
both the trained timescale parameterized by τmi (Fig. 4a)
and also the effective timescale inferred from the activity
of each neuron (Fig. 4b). In the modular case, the average
trained and effective timescales of neurons are reported sep-
arately per module solving N = Nsolved. In the non-modular
case, the average is taken over all neurons in the entire net-
work at the time when it has just solved the N = Nsolved
task.

First, we find that neurons in modular networks maintain
stable trained timescales, ⟨τi⟩m, throughout the curriculum,
but non-modular networks decay to the fastest possible rate
of one (Fig. 4a). In both cases, these trained timescale values
seem too small to account for the long timescales that are
required for the large N tasks they can solve. This motivated
us to examine the effective timescales, which are a product
of the connectivity structure of the whole network.

Figure 4b shows the increase in the average effective

0 50
Nsolved

1.0

1.2

1.4

1.6

⟨τ
⟩

(a)
Trained
Timescales

0 50
Nsolved

2.5

5.0

7.5

10.0
(b)

Effective
Timescales

Modular
Non-Modular

Figure 4: Change in trained and effective timescales for dif-
ferent Nsolved. (a) The trained timescale of the modular net-
work stays the same across modules, while the timescales of
the non-modular network converge to 1 as the Nsolved in-
creases. (b) The effective timescales of both networks in-
crease steadily with Nsolved. A modular network with a
module size of 15 neurons and a non-modular network with
an equal number of trainable parameters were used. Results
are averages over 4 networks.

timescales of neurons in both modular and non-modular net-
works for increasingly complex tasks N . This observation is
consistent with recent observations (Khajehabdollahi et al.,
2024) suggesting a circuit-level implementation of memory
by learning appropriate connection weights (W) rather than
learning slow timescales (τi) at the single neuron level. No-
tably, neurons in the modular networks appear to harbor
memory of longer timescales compared to the non-modular
counterparts at the same stage in the curriculum.

Recurrent vs Feedforward Connections. We now turn to
how the topological constraints imposed by the modular ar-
chitecture suggest different qualitative roles for feedforward
and recurrent connections. For instance, the feedforward
connections serve as the only bottleneck through which the
recurrent computations of each module are reused by subse-
quent modules (Fig. 1), making them potentially more vul-
nerable to noise, whereas the recurrent connections may be
more robust. Furthermore, the dependence of long effective
neural timescales on appropriate connectivity patterns, en-
courages us to examine the distinct roles that feedforward
(WFF) and recurrent (WR) weights play in performance.

To do so, we performed separate perturbation analyses
targeting either feedforward WFF or recurrent connections
WR. We evaluate performance by measuring the accuracy
of each module’s prediction for its corresponding task N .

Figure 5a-b shows that the feedforward connections are
more sensitive to perturbations relative to the recurrent
weights. Furthermore, modules corresponding to more diffi-
cult tasks (indicated by darker colors; Fig. 5a-b), suffer more
because they are affected by the cumulative effect of all the

10−1 100

Pert. of Feedforward εWFF

0.50

0.75

1.00
Ac

cu
ra

cy
ε=1

(a)

10−1 100

Pert. of Recurrent εWR

ε=1

(b)

20

40

Re
ad

ou
t h

ea
d
N

5 10 15 20
Module Size

1.4

1.6

1.8

2.0

W
eig

ht
 ch

an
ge

 σ
2 ΔW

(c)

Feedforward
Recurrent

Figure 5: Feedforward connections are more sensitive than recurrent connections in modular networks. Here, we use Mm = 15
but achieve qualitatively similar results for other network sizes. (a) Perturbing feedforward weights affect downstream modules
more strongly than earlier modules. (b) The recurrent weights exhibit a similar qualitative pattern but are quantitatively more
robust against the same levels of perturbations. (c) Variability of feedforward versus recurrent connection weights across
modules, where variability is inversely related to the degree of conservation (i.e., the amount of shared weights from one
module to the next). Accuracy is averaged over 5 networks, 10 perturbations, and 1000 continuous evaluations. Error bars
show SEM.

perturbations to preceding modules. Note that the effect of
a perturbation is always downstream, due to the sequentially
connected architecture of modules, such that a single pertur-
bation equally affects all downstream modules.

To understand the basis for the sensitivity of WFF , we
hypothesize that WFF are subject to more fine-tuning via
back-propagation, in order to facilitate specialization to each
new task. On the other hand, we expect WR to be more
conserved, and subject to less modification from one task to
the next. We define the change in the connection weight
between nodes i and j across two consecutive modules
as ∆Wij , where we normalized each weight by its mean
and standard deviation to correct for systematic differences
across module sizes (LeCun et al., 2012). The variance of
the normalized weight change, σ2

∆W ij
, is the change in the

normalized weight, ∆Wij = W
m

ij −W
m−1

ij between corre-
sponding neurons, i, j, in consecutive modules, m,m − 1.
This serves as an inverse proxy for the degree to which the
weights are conserved during training, where lower variance
corresponds to greater conservation of weights.

Figure 5c shows how recurrent weights are more con-
served than feedforward weights (lower variance). This sup-
ports the hypothesis that sensitivity of feedforward connec-
tions to perturbations is due to a more general sensitivity to
modification, both from noise and from back-propagated er-
ror during training.

Weight Freezing. The low variability of the recurrent
weights motivated us to test the degree to which a network
can continue to learn despite a complete freezing of either its
recurrent or the feedforward weights, after passing the very
first step in the curriculum. A freezing of weights corre-
sponds to a reduction of computational costs, by converting
learnable parameters of a model into fixed biases. In evolu-

tionary biology, this is known as the Baldwin effect (Gruau
and Whitley, 1993), where plastic behaviors become fixated
in response to environmental stability. In the case of frozen
recurrent weights, we trained the first module for N = 2
and then duplicated the learned recurrent weights on all sub-
sequent modules, training only the feedforward connections
between modules. Conversely, in the case of frozen feedfor-
ward weights, we train the feedforward connections between
the N = 2 and N = 3 modules and then duplicate this
trained connectivity between all subsequent modules, only
training the internal recurrent connections of each module.

Figure 6a shows that networks with frozen feedforward
weights fail catastrophically to solve the task for any N ≥
3. However, equivalent networks with frozen recurrent
connectivity (resembling deep reservoirs; Gallicchio and
Micheli, 2021), perform much better, comfortably reaching
an Nsolved ≈ 15 before stagnating (Fig. 6a) and even outper-
forming non-modular networks that taper at N ≈ 10. Thus,
while both network types underperform the original network
for which both recurrent and feedforward connections are
trained, we see that, in line with our previous results, the
learnability of the feedforward connections appears to be
much more important for task performance.

Weight Duplication. The weight freezing experiments in-
volved the reuse (or duplication) of weights from the previ-
ous module followed by a complete blockage of their train-
ing. Here we consider duplicative versus random initializa-
tion of the weights, and maintain the plasticity of weights
during training. Theoretically, duplication can be benefi-
cial by amortizing the costs of learning through the reuse
of already-trained weights, or it could be detrimental by
initializing the network in a state unsuitable for the new
task. Empirically, previous work using weight-agnostic neu-
ral networks (Gaier and Ha, 2019), compositional pattern-

0 20 40 60
Epochs

0

20

40

60

N
So

lv
ed

(a)(a)(a)
Fully Trained, Mm = 5
Frozen WR,Mm = 5
Frozen WFF,Mm = 5
Mm = 10

0 20 40 60
Epochs

0
10
20
30
40
50
60

⟨N
So

lv
ed

⟩

(b) Duplicating
 WR : WFF

T : T
F : F
F : T
T : F

Figure 6: The impact of weight freezing and duplication on feedforward and recurrent weights. (a) Weight freezing. Solid
lines are a modular network with Mm = 5, selected for the strongest differences. Here, we can see that freezing recurrent con-
nections (orange) after solving the first task (N = 2) still needs to relatively good performance, whereas freezing feedforward
connections (teal) severely impairs learning. In networks of larger module size (Mm = 10; dotted lines), the difference be-
tween frozen recurrent weights and a fully trained network disappears (both dotted orange), while frozen feedforward weights
remain impaired. (b) Weight duplication. New modules are initialized with either a duplicated copy (T) of their weights as
they appeared in the previous module, or a random initialization of weights (F). Duplication of recurrent weights confers a
slight advantage (green), while either duplicative or randomly initialized feedforward weights both confer a slight impairment
to performance. Results are averages over 5 networks and shaded regions indicate SEM.

producing networks (Stanley, 2007), and hypernetworks
(Ha et al., 2016), have demonstrated the utility of simi-
lar “weight-sharing” schemes that support high-performing
neural networks with a fraction of the parameter count. Mo-
tivated by these past successes, here we explore whether the
duplication of recurrent or feedforward components can ac-
celerate the training of the network, or if such methods are
detrimental by trapping the behavior of the network in a lo-
cal optima.

Figure 6b shows the results of these experiments, where
weights were either duplicated (T for true) or not (F for
false); in case of the latter, they were initialized randomly
following a uniform distribution. The lines show the av-
erage performance of 6 networks in each of the 4 differ-
ent conditions, with and without duplication of feedforward
WFF and/or recurrent WR weights. These results show
that the duplication of recurrent weights WR appears to ac-
count for an unambiguous advantage (Fig. 6b; green curves),
compared to the duplication of feedforward weights, which
do not confer any additional benefits. Indeed, duplicat-
ing feedforward weights confers little to no improvement to
when neither weights are duplicated (Fig. 6b, brown curves).
We also experimented with noisy duplication, but given the
weak overall effect, we only show the results of exact du-
plication, without noise. Furthermore, different duplication
strategies mattered less at larger module sizes, so we focused
only on networks with five nodes per module Mm = 5.

These results are consistent with our previous analysis
showing that feedforward connections must diverge from
their past configurations to specialize for their respective
task. Therefore, as long as the feedforward connections re-

main plastic after a growth event, they are molded strongly
by the error signal from their new task, making their ini-
tial state irrelevant. In contrast, we have already shown how
keeping the same or similar recurrent weights across mul-
tiple tasks is relatively adaptive. Thus, duplication simply
initializes the weights near their last functional state, elimi-
nating the need to retrain them to that stage at every epoch,
and allows for minimal fine-tuning to improve their adap-
tiveness over longer timescales.

Discussion
In sum, we find that modular networks, trained via a growing
curriculum to solve a memory task of adjustable difficulty,
outperform standard recurrent neural networks (RNNs) of
fixed size in terms of accuracy, training time, generalization,
and robustness to perturbations of the learned connectivity.

Biological neural networks are highly structured (Hag-
mann et al., 2008; Sporns and Zwi, 2004; Sporns and Betzel,
2016), with multiple neuron types each following distinct
connectivity patterns (Peng et al., 2021; Liu et al., 2023)
that form complex circuits repeating across brain regions
(Douglas and Martin, 2004; Shepherd, 2011). The repeti-
tion of similar complex structures in the brain potentially
enables the development of very complex neural circuits
from limited genetic information (Rakic, 2009; Geschwind
and Rakic, 2013; Stanley, 2007), and may also play a role
in more efficient information processing (Bassett and Bull-
more, 2006; Sporns, 2013). Moreover, inhomogeneous net-
work topology has been shown to generate non-trivial dy-
namics (Litwin-Kumar and Doiron, 2012) and act as an in-
ductive bias for local learning (Giannakakis et al., 2023).

Here, our findings add to this literature by suggesting rela-
tively simple topological modularity can be utilized to align
network dynamics with task requirements, thus increasing
performance and reducing training time and cost.

Our modular architecture allows us to study the roles
played by different aspects of the network’s structure. In
particular, we focus on the distinction between the recurrent
weights within each module and the feedforward weights
connecting adjacent modules. Our analysis indicates that
the training and task specialization of feedforward weights
between modules are vastly more important than the recur-
rent connections within each module. This suggests that the
function of the recurrent connectivity is largely limited to
creating appropriate and generic dynamical units (and can
thus be effectively reused through duplication), while the
feedforward connections control the flow of information that
is necessary for solving the specifics of a given task.

While our network included trainable single-neuron
timescales, which have been utilized in RNNs solving tem-
poral tasks (Tallec and Ollivier, 2018; Quax et al., 2020;
Khajehabdollahi et al., 2024), we find that their importance
is minimal in terms of network performance. The distribu-
tion of trained timescales barely changes across modules,
suggesting that the network fully relies on its connectivity
(particularly the hierarchical topology) for developing the
long timescales necessary for solving temporal tasks. This
augments previous findings suggesting that network topol-
ogy can generate long timescales with relatively random
connections (Khajehabdollahi et al., 2024).

This understanding of the relative importance of differ-
ent network components, allows us to test whether training
even fewer parameters can lead to comparable results. We
find that training the networks as deep reservoirs (Gallicchio
and Micheli, 2021) leads to reasonably good performance
despite reducing the trainable parameters by half. This sug-
gests that functional sub-networks can be used as building
blocks in larger systems with little or no training, which
seems like a promising avenue for future research.

The importance of initializing neural networks in an
appropriate dynamical regime has been widely explored
(Zierenberg et al., 2020; Khajehabdollahi et al., 2022), and
our findings here suggest that hierarchical modular struc-
tures could be used to generate networks with beneficial dy-
namics for learning temporal tasks. Recycling functional
structures and incorporating them in complex networks of
interacting sub-units is a widespread characteristic of bio-
logical networks (Felleman and Van Essen, 1991) and has
shown promise in artificial settings (Happel and Murre,
1994; Sharkey, 1996; Amer and Maul, 2019). Our findings
suggest that this approach is not only more efficient in terms
of the number of trainable parameters, but it can also boost
performance as well as the ability to generalize.

Limitations & Future Work. A basic premise of our
work was that the power and cost of a neural network are
proportional to the number of its trainable parameters. The
number of parameters, therefore, provided a basis for com-
paring neural networks of two different architectures. Our
results indicate that one can maintain or even exceed per-
formance while being more frugal in resource expenditure
on connections. While this result is relevant both for artifi-
cial (Amer and Maul, 2019) and biological networks (Clune
et al., 2013), where these connections carry non-trivial costs,
it does overlook the relative cost of producing and maintain-
ing neurons in addition to their connections. Our modular
architecture incurs a heavy cost in terms of individual neu-
ral processing units, scaling linearly with task complexity
in proportion to each module’s size. Indeed, the ability of
modular networks to learn longer effective timescales points
to the importance of large but sparse networks in solving a
memory task. Future work could address the trade-off be-
tween these two resources and their impact on performance.

Finally, even though we found a functional role for du-
plicative growth in artificial networks, the observed bene-
fits were modest. In evolutionary contexts, relaxed selection
(Deacon, 2010) provides a mechanism by which duplication
can accommodate enhanced adaptation by fostering syner-
gistic interactions between duplicated modules. In our cur-
rent setup, each duplicated module is required to solve a new
task, subjecting it to heavy selection pressure that prevents
it from exploring the entirety of the weight space. Relaxing
this constraint by introducing redundancy in modules that
are assigned the same task, could amplify the positive ef-
fects of duplication in future research.

In conclusion, modular growth offers a promising av-
enue for training lighter networks with more scalable proper-
ties. In the era of large models with increasingly prohibitive
costs, there is great interest in developing new tools to com-
press models with fewer parameters (Cheung et al., 2019)
and fine-tune them to perform novel tasks (Hu et al., 2021).
Our work, like other evolutionary-inspired approaches (Ak-
iba et al., 2024), can offer new directions towards this end.

Acknowledgements

MH, EG, TS and SK thank the International Max Planck Re-
search School for Intelligent Systems (IMPRS-IS) for their
support. MH, EG, and CMW are supported by the Ger-
man Federal Ministry of Education and Research (BMBF):
Tübingen AI Center, FKZ: 01IS18039A. MH and CMW
are funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy–EXC2064/1–390727645. TS is supported by Else
Kröner Medical Scientist Kolleg “ClinbrAIn: Artificial In-
telligence for Clinical Brain Research”.

References
Akaike, H. (1974). A new look at the statistical model identifica-

tion. IEEE Transactions on Automatic Control, 19(6):716–
723.

Akiba, T., Shing, M., Tang, Y., Sun, Q., and Ha, D. (2024). Evolu-
tionary optimization of model merging recipes.

Amer, M. and Maul, T. (2019). A review of modularization tech-
niques in artificial neural networks. Artificial Intelligence Re-
view, 52:527–561.

Andrews, J. H. (1998). Bacteria as modular organisms. Annual
review of microbiology, 52(1):105–126.

Bassett, D. S. and Bullmore, E. (2006). Small-world brain net-
works. The neuroscientist, 12(6):512–523.

Bathellier, B., Buhl, D. L., Accolla, R., and Carleton, A. (2008).
Dynamic ensemble odor coding in the mammalian olfactory
bulb: Sensory information at different timescales. Neuron,
57(4):586–598.

Chaudhuri, R., Bernacchia, A., and Wang, X.-J. (2014). A diversity
of localized timescales in network activity. eLife, 3.

Cheung, B., Terekhov, A., Chen, Y., Agrawal, P., and Olshausen,
B. (2019). Superposition of many models into one.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empiri-
cal evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555.

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary
origins of modularity. Proceedings of the Royal Society b:
Biological sciences, 280(1755):20122863.

Cosmides, L. and Tooby, J. (1997). The modular nature of human
intelligence. The origin and evolution of intelligence, pages
71–101.

Deacon, T. W. (2010). A role for relaxed selection in the evolution
of the language capacity. Proc. Natl. Acad. Sci. U. S. A., 107
Suppl 2(Suppl 2):9000–9006.

Douglas, R. J. and Martin, K. A. (2004). Neuronal circuits of the
neocortex. Annu. Rev. Neurosci., 27:419–451.

El Hihi, S. and Bengio, Y. (1995). Hierarchical recurrent neural
networks for long-term dependencies. In Proceedings of the
8th International Conference on Neural Information Process-
ing Systems, NIPS’95, page 493–499, Cambridge, MA, USA.
MIT Press.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and
Tian, Y. (2021). Incorporating Learnable Membrane Time
Constant to Enhance Learning of Spiking Neural Networks.
arXiv:2007.05785 [cs].

Felleman, D. J. and Van Essen, D. C. (1991). Distributed hierarchi-
cal processing in the primate cerebral cortex. Cerebral cortex
(New York, NY: 1991), 1(1):1–47.

Fodor, J. A. (1983). The modularity of mind. MIT press.

Gaier, A. and Ha, D. (2019). Weight agnostic neural networks.
Advances in neural information processing systems, 32.

Gallicchio, C. and Micheli, A. (2021). Deep Reservoir Computing,
pages 77–95. Springer Singapore, Singapore.

Garcia-Fernàndez, J. (2005). The genesis and evolution of home-
obox gene clusters. Nat. Rev. Genet., 6(12):881–892.

Geschwind, D. H. and Rakic, P. (2013). Cortical evolution: judge
the brain by its cover. Neuron, 80(3):633–647.

Giannakakis, E., Vinogradov, O., Buendia, V., and Levina, A.
(2023). Recurrent connectivity structure controls the emer-
gence of co-tuned excitation and inhibition. bioRxiv.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE
international conference on acoustics, speech and signal pro-
cessing, pages 6645–6649. Ieee.

Greengard, P. (2001). The Neurobiology of Slow Synaptic Trans-
mission. Science, 294(5544):1024–1030. Publisher: Ameri-
can Association for the Advancement of Science.

Gruau, F. and Whitley, D. (1993). Adding learning to the cellular
development of neural networks: Evolution and the baldwin
effect. Evolutionary computation, 1(3):213–233.

Ha, D., Dai, A., and Le, Q. V. (2016). Hypernetworks. arXiv
preprint arXiv:1609.09106.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J.,
Wedeen, V. J., and Sporns, O. (2008). Mapping the structural
core of human cerebral cortex. PLoS biology, 6(7):e159.

Happel, B. L. and Murre, J. M. (1994). Design and evolution of
modular neural network architectures. Neural networks, 7(6-
7):985–1004.

Hohil, M. E., Liu, D., and Smith, S. H. (1999). Solving the n-
bit parity problem using neural networks. Neural Networks,
12(9):1321–1323.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., and Chen, W. (2021). LoRA: Low-Rank adaptation
of large language models.

Jaeger, H. (2002). Tutorial on training recurrent neural networks,
covering bppt, rtrl, ekf and the echo state network approach.

Khajehabdollahi, S., Prosi, J., Giannakakis, E., Martius, G., and
Levina, A. (2022). When to Be Critical? Performance and
Evolvability in Different Regimes of Neural Ising Agents. Ar-
tificial Life, pages 1–21.

Khajehabdollahi, S., Zeraati, R., Giannakakis, E., Schäfer, T. J.,
Martius, G., and Levina, A. (2024). Emergent mechanisms
for long timescales depend on training curriculum and affect
performance in memory tasks. In The Twelfth International
Conference on Learning Representations.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015).
Human-level concept learning through probabilistic program
induction. Science, 350(6266):1332–1338.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Ef-
ficient BackProp. In Montavon, G., Orr, G. B., and Müller,
K.-R., editors, Neural Networks: Tricks of the Trade: Sec-
ond Edition, pages 9–48. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Litwin-Kumar, A. and Doiron, B. (2012). Slow dynamics and high
variability in balanced cortical networks with clustered con-
nections. Nature Neuroscience, 15(11):1498–1505. Number:
11 Publisher: Nature Publishing Group.

Liu, L., Yun, Z., Manubens-Gil, L., Chen, H., Xiong, F., Dong,
H., Zeng, H., Hawrylycz, M., Ascoli, G. A., and Peng, H.
(2023). Neuronal connectivity as a determinant of cell types
and subtypes. Research Square.

Lui, J., Hansen, D., and Kriegstein, A. (2011). Development and
evolution of the human neocortex. Cell, 146:18–36.

Manea, A. M., Zilverstand, A., Ugurbil, K., Heilbronner, S. R., and
Zimmermann, J. (2022). Intrinsic timescales as an organiza-
tional principle of neural processing across the whole rhesus
macaque brain. eLife, 11:e75540.

Morcos, A. and Harvey, C. (2016). History-dependent variability in
population dynamics during evidence accumulation in cortex.
Nature Neuroscience, 19.

Murray, J., Bernacchia, A., Freedman, D., Romo, R., Wallis, J.,
Cai, X., Padoa Schioppa, C., Pasternak, T., Seo, H., Lee, D.,
and Wang, X.-J. (2014). A hierarchy of intrinsic timescales
across primate cortex. Nature neuroscience, 17.

Najarro, E., Sudhakaran, S., and Risi, S. (2023). Towards Self-
Assembling Artificial Neural Networks through Neural De-
velopmental Programs. volume ALIFE 2023: Ghost in the
Machine: Proceedings of the 2023 Artificial Life Conference,
page 80.

Panzeri, S., Brunel, N., Logothetis, N. K., and Kayser, C. (2010).
Sensory neural codes using multiplexed temporal scales.
Trends in Neurosciences, 33(3):111–120.

Peng, H., Xie, P., Liu, L., Kuang, X., Wang, Y., Qu, L., Gong,
H., Jiang, S., Li, A., Ruan, Z., et al. (2021). Morphological
diversity of single neurons in molecularly defined cell types.
Nature, 598(7879):174–181.

Perez-Nieves, N., Leung, V. C. H., Dragotti, P. L., and Goodman,
D. F. M. (2021). Neural heterogeneity promotes robust learn-
ing. Nature Communications, 12(1):5791.

Quax, S. C., D’Asaro, M., and van Gerven, M. A. J. (2020). Adap-
tive time scales in recurrent neural networks. Scientific Re-
ports, 10(1):11360. Number: 1 Publisher: Nature Publishing
Group.

Rakic, P. (2009). Evolution of the neocortex: a perspective
from developmental biology. Nature Reviews Neuroscience,
10(10):724–735.

Rubino, V., Hamidi, M., Dayan, P., and Wu, C. M. (2023). Com-
positionality under time pressure.

Safavi, S., Chalk, M., Logothetis, N., and Levina, A. (2023). Sig-
natures of criticality in efficient coding networks. bioRxiv,
pages 2023–02.

Schaub, M. T., Billeh, Y. N., Anastassiou, C. A., Koch, C., and
Barahona, M. (2015). Emergence of Slow-Switching Assem-
blies in Structured Neuronal Networks. PLOS Computational
Biology, 11(7):e1004196. Publisher: Public Library of Sci-
ence.

Sharkey, A. J. C. (1996). On combining artificial neural nets. Con-
nection science, 8(3-4):299–314.

Shen, L., Sun, Y., Yu, Z., Ding, L., Tian, X., and Tao, D. (2023).
On efficient training of large-scale deep learning models: A
literature review.

Shepherd, G. M. (2011). The microcircuit concept applied to corti-
cal evolution: from three-layer to six-layer cortex. Frontiers
in neuroanatomy, 5:30.

Shi, Y.-L., Zeraati, R., Levina, A., and Engel, T. A. (2023). Spatial
and temporal correlations in neural networks with structured
connectivity. Physical Review Research, 5(1):013005.

Smith, J. T., Warrington, A., and Linderman, S. (2023). Simplified
state space layers for sequence modeling. In The Eleventh
International Conference on Learning Representations.

Sporns, O. (2013). Network attributes for segregation and integra-
tion in the human brain. Current opinion in neurobiology,
23.

Sporns, O. and Betzel, R. F. (2016). Modular brain networks. An-
nual review of psychology, 67:613–640.

Sporns, O. and Zwi, J. D. (2004). The small world of the cerebral
cortex. Neuroinformatics, 2:145–162.

Stanley, K. O. (2007). Compositional pattern producing networks:
A novel abstraction of development. Genetic programming
and evolvable machines, 8:131–162.

Stork, D. G. and Allen, J. D. (1992). How to solve the n-bit parity
problem with two hidden units. Neural networks, 5(6):923–
926.

Tallec, C. and Ollivier, Y. (2018). Can recurrent neural networks
warp time? arXiv preprint arXiv:1804.11188.

Torres, J. F., Hadjout, D., Sebaa, A., Martı́nez-Álvarez, F., and
Troncoso, A. (2021). Deep learning for time series forecast-
ing: a survey. Big Data, 9(1):3–21.

Wu, D., Xia, S.-T., and Wang, Y. (2020). Adversarial weight per-
turbation helps robust generalization. Advances in Neural In-
formation Processing Systems, 33:2958–2969.

Yin, B., Corradi, F., and Bohté, S. M. (2020). Effective and Ef-
ficient Computation with Multiple-timescale Spiking Recur-
rent Neural Networks. In International Conference on Neuro-
morphic Systems 2020, ICONS 2020, pages 1–8, New York,
NY, USA. Association for Computing Machinery.

Yuan, X., Savarese, P., and Maire, M. (2023). Accelerated train-
ing via incrementally growing neural networks using variance
transfer and learning rate adaptation. Advances in Neural In-
formation Processing Systems, 36.

Zeraati, R., Engel, T. A., and Levina, A. (2022). A flexible
Bayesian framework for unbiased estimation of timescales.
Nature Computational Science, 2(3):193–204.

Zeraati, R., Shi, Y.-L., Steinmetz, N. A., Gieselmann, M. A.,
Thiele, A., Moore, T., Levina, A., and Engel, T. A. (2023).
Intrinsic timescales in the visual cortex change with selective
attention and reflect spatial connectivity. Nature Communi-
cations, 14(1):1858.

Zhou, H., Nagy, D. G., and Wu, C. M. (2024). Harmonizing pro-
gram induction with rate-distortion theory. arXiv preprint
arXiv:2405.05294.

Zierenberg, J., Wilting, J., Priesemann, V., and Levina, A. (2020).
Tailored ensembles of neural networks optimize sensitivity to
stimulus statistics. Phys. Rev. Res., 2:013115.

	Introduction
	Methods
	Task
	Networks
	Timescale Estimation
	Robustness

	Results
	Modular vs. Non-Modular Networks
	Functional Analysis of Modular Networks

	Discussion
	Acknowledgements

