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Abstract

The evolutionary balance between innate and learned behav-
iors is highly intricate, and different organisms have found
different solutions to this problem. We hypothesize that the
emergence and exact form of learning behaviors is naturally
connected with the statistics of environmental fluctuations
and tasks an organism needs to solve. Here, we study how
different aspects of simulated environments shape an evolved
synaptic plasticity rule in static and moving artificial agents.
We demonstrate that environmental fluctuation and uncer-
tainty control the reliance of artificial organisms on plastic-
ity. Interestingly, the form of the emerging plasticity rule is
additionally determined by the details of the task the artificial
organisms are aiming to solve. Moreover, we show that co-
evolution between static connectivity and interacting plastic-
ity mechanisms in distinct sub-networks changes the function
and form of the emerging plasticity rules in embodied agents
performing a foraging task.

Introduction

One of the defining features of living organisms is their abil-
ity to adapt to their environment and incorporate new infor-
mation to modify their behavior. It is unclear how the ability
to learn first evolved (Papini, [2012)), but its utility appears
evident. Natural environments are too complex for all the
necessary information to be hardcoded genetically (Snell-
Rood} 2013)) and more importantly, they keep changing dur-
ing an organism’s lifetime in ways that cannot be anticipated
(Ellefsen, 2014; |Dunlap and Stephens, 2016). The link be-
tween learning and environmental uncertainty and fluctua-
tion has been extensively demonstrated in both natural (Kerr
and Feldman), 2003} |[Snell-Rood and Steck, 2019), and arti-
ficial environments (Nolfi and Parisi, [1996).

Nevertheless, the ability to learn does not come without
costs. For the capacity to learn to be beneficial in evolu-
tionary terms, a costly nurturing period is often required,
a phenomenon observed in both biological (Thornton and
Clutton-Brock, 2011}, and artificial organisms (Eskridge
and Hougen, 2012). Additionally, it has been shown that in
some complex environments, hardcoded behaviors may be
superior to learned ones given limits in the agent’s lifetime

and environmental uncertainty (Dunlap and Stephens| |2009;
Fawcett et al., 2012; Lange and Sprekeler, 2020).

The theoretical investigation of the optimal balance be-
tween learned and innate behaviors in natural and artificial
systems goes back several decades. However, it has recently
found also a wide range of applications in applied Al sys-
tems (Lee and Leel, 2020; [Biesialska et al., [2020). Most Al
systems are trained for specific tasks, and have no need for
modification after their training has been completed. Still,
technological advances and the necessity to solve broad fam-
ilies of tasks make discussions about life-like Al systems rel-
evant to a wide range of potential application areas. Thus the
idea of open-ended Al agents (Open Ended Learning Team
et al., [2021) that can continually interact with and adapt to
changing environments has become particularly appealing.

Many different approaches for introducing lifelong learn-
ing in artificial agents have been proposed. Some of
them draw direct inspiration from actual biological systems
(Schmidhuber, [1987} [Parisi et al.| 2019). Among them, the
most biologically plausible solution is to equip artificial neu-
ral networks with some local neural plasticity (Thangarasa
et al., [2020), similar to the large variety of synaptic plastic-
ity mechanisms (Citri and Malenkal |2008; [Feldman), 2009
Caroni et al., |2012) that performs the bulk of the learning
in the brains of living organisms (Magee and Grienberger,
2020). The artificial plasticity mechanisms can be optimized
to modify the connectivity of the artificial neural networks
toward solving a particular task. The optimization can use
a variety of approaches, most commonly evolutionary com-
putation.

The idea of meta-learning or optimizing synaptic plastic-
ity rules to perform specific functions has been recently es-
tablished as an engineering tool that can compete with state-
of-the-art machine learning algorithms on various complex
tasks (Burms et al.| [2015; Najarro and Risi, 2020; [Pedersen
and Risi, 2021} [Yaman et al.| 2021)). Additionally, it can be
used to reverse engineer actual plasticity mechanisms found
in biological neural networks and uncover their functions
(Confavreux et al.,[2020; Jordan et al., 2021).

Here, we study the effect that different factors (environ-
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mental fluctuation and reliability, task complexity) have on
the form of evolved functional reward-modulated plastic-
ity rules. We investigate the evolution of plasticity rules
in static, single-layer simple networks. Then we increase
the complexity by switching to moving agents performing a
complex foraging task. In both cases, we study the impact
of different environmental parameters on the form of the
evolved plasticity mechanisms and the interaction of learned
and static network connectivity. Interestingly, we find that
different environmental conditions and different combina-
tions of static and plastic connectivity have a very large im-
pact on the resulting plasticity rules.

Methods
Environment

We imagine an agent who must forage to survive in an envi-
ronment presenting various types of complex food particles.
Each food particle is composed of various amounts and com-
binations of NV ingredients that can have positive (food) or
negative (poison) values. The value of a food particle is a
weighted sum of its ingredients. To predict the reward value
of a given resource, the agent must learn the values of these
ingredients by interacting with the environment. The priors
could be generated by genetic memory, but the exact values
are subject to change.

To introduce environmental variability, we stochastically
change the values of the ingredients. More precisely, we
define two ingredient-value distributions F; and F; (Gut-
tenberg), |2019) and switch between them, with probability
P for every time step. We control how (dis)similar the en-
vironments are by parametrically setting Eo = (1 —2d,)E1,
with d. € [0, 1] serving as a distance proxy for the environ-
ments; when d. = 0, the environment remains unchanged,
and when d. = 1 the value of each ingredient fully reverses
when the environmental transition happens. For simplicity,
we take values of the ingredients in F; equally spaced be-
tween -1 and 1 (for the visualization, see Fig. , b).

Static agent

The static agent receives passively presented food as a vector
of ingredients and can assess its compound value using the
linear summation of its sensors with the (learned or evolved)
weights, see Fig.[1| The network consists of [V sensory neu-
rons that are projecting to a single post-synaptic neuron. At
each time step, an input X; = (z1,...,zy) is presented,
were the value z;, i € {1,..., N} represents the quantity of
the ingredient ?. We draw x; independently form a uniform
distribution on the [0, 1] interval (z; ~ U(0,1)). The value
of each ingredient wy is determined by the environment (£,
or E5).

The postsynaptic neuron outputs a prediction of the food
X, value as y; = g(WX['). Throughout the paper, g will
be either the identity function, in which case the prediction
neuron is linear, or a step-function; however, it could be any

other nonlinearity, such as a sigmoid or ReLU. After out-
putting the prediction, the neuron receives feedback in the
form of the real value of the input R;. The real value is
computed as By = WeX[ + ¢, where W€ = (w§, ..., wS)
is the actual value of the ingredients, and £ is a term summa-
rizing the noise of reward and sensing system & ~ A(0, o).

ye = g(W X[)

R, =WeXT +¢ AW, = F(Xt, ys, Re)
L= |R —yl
W, '
Xt e

Sensors

Figure 1: An outline of the static agent’s network. The sen-
sor layer receives inputs representing the quantity of each
ingredient of a given food at each time step. The agent com-
putes the prediction of the food’s value y, and is then given
the true value Ry, it finally uses this information in the plas-
ticity rule to update the weight matrix.

For the evolutionary adjustment of the agent’s parameters,
the loss of the static agent is the sum of the mean squared
errors (MSE) between its prediction y; and the reward R;
over the lifetime of the agent. The agent’s initial weights are
set to the average of the two ingredient value distributions,
which is the optimal initial value for the case of symmetric
switching of environments that we consider here.

Moving Agent

As a next step, we incorporate the sensory network of static
agents into embodied agents that can move around in an en-
vironment scattered with food. To this end, we merge the
static agent’s network with a second, non-plastic motor net-
work that is responsible for controlling the motion of the
agent in the environment. Specifically, the original plastic
network now provides the agent with information about the
value of the nearest food. The embodied agent has additional
sensors for the distance from the nearest food, the angle be-
tween the current velocity and the nearest food direction, its
own velocity, and its own energy level (sum of consumed
food values). These inputs are processed by two hidden lay-
ers (of 30 and 15 neurons) with tanh activation. The net-
work’s outputs are angular and linear acceleration, Fig.
The embodied agents spawn in a 2D space with periodic
boundary conditions along with a number of food particles
that are selected such that the mean of the food value dis-
tribution is ~ 0. An agent can eat food by approaching it
sufficiently closely, and each time a food particle is eaten,
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Figure 2: An outline of the network controlling the foraging
agent. The sensor layer receives inputs at each time step
(the ingredients of the nearest food), which are processed
by the plastic layer in the same way as the static sensory
network, Fig.[l| The output of that network is given as input
to the motor network, along with the distance d and angle o
to the nearest food, the current velocity v, and energy E of
the agent. These signals are processed through two hidden
layers to the final output of motor commands as the linear
and angular acceleration of the agent

it is re-spawned with the same value somewhere randomly
on the grid (following the setup of (Khajehabdollahi et al.|
2022)). After 5000 time steps, the cumulative reward of the
agent (the sum of the values of all the food it consumed)
is taken as its fitness, at which point the best agents are se-
lected by the genetic algorithm and used to initialize the next
generation. The environment (food and agents’ positions)
is re-initialized at the start of each generation. During the
evolutionary optimization, the parameters for both the motor
network (connections) and plastic network (learning rule pa-
rameters) are evolved simultaneously (the genotype includes
both motor weights and plasticity parameters), and so agents
must learn to move and discriminate good/bad food at the
same time.

Plasticity rule parametrization

Reward-modulated plasticity is one of the most promising
explanations for biological credit assignment (Legenstein
et al., 2008). In our network, the plasticity rule that up-
dates the weights of the linear sensor network is a reward-
modulated rule which is parameterized as a linear combi-
nation of the input, the output, and the reward at each time

step:

Reward Modulated
AWy = np[Ry - (01 Xys + Ooye + 03X + 04)
+ (05 X1y + Osye + 07X + 63)]. (1)

Hebbian

Additionally, after each plasticity step, the weights are nor-
malized by mean subtraction, an important step for the sta-
bilization of Hebbian-like plasticity rules (Zenke and Gerst-
ner, [2017)).

We use a genetic algorithm to optimize the learning rate
71, and amplitudes of different terms 6§ = (61, ..., 60s). The
successful plasticity rule after many food presentations must
converge to a weight vector that predicts the correct food
values (or allows the agent to correctly decide whether to
eat a food or avoid it).

To have comparable results, we divide ¢ = (61,...,0s)
by Omax = maxy |0x|. So that 0/0,., = 0™ € [—1,1]5.
We then multiply the learning rate 7, with 0.« to maintain
the rule’s evolved form unchanged, 77;}0”“ = 1p * Omax. In
the following, we always use normalized 7, and 6, omitting

norm

Evolutionary Algorithm

To evolve the plasticity rule and the moving agents’ motor
networks, we use a simple genetic algorithm with elitism
(Deb\ [2011). The agents’ parameters are initialized at ran-
dom (drawn from a Gaussian distribution), then the sen-
sory network is trained by the plasticity rule and finally,
the agents are evaluated. After each generation, the best-
performing agents (top 10 % of the population size) are se-
lected and copied into the next generation. The remaining
90 % of the generation is repopulated with mutated copies
of the best-performing agents. We mutate agents by adding
independent Gaussian noise (o = 0.1) to its parameters. Un-
less specified otherwise, we train a population of 100 agents
for 200 generations.

Results

Environmental and reward variability control the
evolved learning rates of the static agents

To start with, we consider a static agent whose goal is to
identify the value of presented food correctly. The static
reward-prediction network quickly evolves the parameters
of the learning rule, successfully solving the prediction task.
We first look at the evolved learning rate 7,, which deter-
mines how fast (if at all) the network’s weight vector is up-
dated during the lifetime of the agents. We identify three
factors that control the learning rate parameter the EA con-
verges to: the distance between the environments, the noisi-
ness of the reward, and the rate of environmental transition.

The first natural factor is the distance d. between the
two environments, with a larger distance requiring a higher
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Figure 3: a. Schematic representation of two-states Markov model with transition probability py, between two environments F
and FE defined by the ingredient value distributions. b. We vary the Es environment by changing the ingredient values linearly
E; = (1 — 2d.)En, the d. is indicated by the color. c¢. The evolved learning rate n, grows with the distance d. between the
environments and decreases with the reward variance o. d. The environment transition probability py, (here for d. = 1 and
o = 0.25) has a non-monotonous relationship with the evolved learning rate n,. Up to a certain point, more rapid transitions
lead to faster learning, but too rapid environmental transition leads to a reduction of the evolved learning rate. e. For slow
environmental transition (top), the agent fully adapts to the environment after each transition. If the transitions happen fast
(bottom), the agent maintains an intermediate position between the two environments and never fully adapts to either of them.

learning rate, Fig. Bt. This is an expected result since the
convergence time to the “correct” weights is highly depen-
dent on the initial conditions. If an agent is born at a point
very close to optimality, which naturally happens if the envi-
ronments are similar, the distance it needs to traverse on the
fitness landscape is small. Therefore it can afford to have
a small learning rate, which leads to a more stable conver-
gence and is not affected by noise.

A second parameter that impacts the learning rate is the
variance of the rewards. The reward an agent receives for
the plasticity step contains a noise term & that is drawn from
a zero mean Gaussian distribution with standard deviation
o. This parameter controls the unreliability of the agent’s
sensory system, i.e., higher 0 means that the information
the agent gets about the value of the foods it consumes can-
not be fully trusted to reflect the actual value of the foods.
As o increases, the learning rate 7, decreases, which means
that the more unreliable an environment becomes, the less
an agent relies on plasticity to update its weights, Fig. Bk.

Indeed for some combinations of relatively small distance
d. and high reward variance o, the EA converges to a learn-
ing rate of 1, ~ 0. This means that the agent opts to have
no adaptation during its lifetime and remain at the mean of
the two environments. It is an optimal solution when the ex-
pected loss due to ignoring the environmental transitions is,
on average, lower than the loss the plastic network will incur
by learning via the (often misleading because of the high o)
environmental cues.

A final factor that affects the learning rate the EA will con-
verge to is the frequency of environmental change during an
agent’s lifetime. Since the environmental change is modeled
as a simple, two-state Markov process (Fig. [3), the control
parameter is the transition probability py,..

When keeping everything else the same, the learning rate
rapidly rises as we increase the transition probability from
0, and after reaching a peak, it begins to decline slowly,
eventually reaching zero (Fig. Bld). This means that when
environmental transition is very rare, agents opt for a very
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,03) of the plasticity rule for the reward prediction (a.) and the decision (b.)

tasks, for a variety of parameters (py, = 0.01, d. € 0,0.1,...,1, and o0 € 0,0.1,...,1 in all 100 combinations). Despite
the relatively small difference between the tasks, the evolved learning rules differ considerably. For visual guidance, the lines

connect 0s from the same run.

low learning rate, allowing a slow and stable convergence to
an environment-appropriate weight vector that leads to very
low losses while the agent remains in that environment. As
the rate of environmental transition increases, faster learn-
ing is required to speed up convergence in order to exploit
the (comparatively shorter) stays in each environment. Fi-
nally, as the environmental transition becomes too fast, the
agents opt for slower or even no learning, which keeps them
near the middle of the two environments, ensuring that the
average loss of the two environments is minimal (Fig. ).

The form of the evolved learning rule depends on
the task: Decision vs. Prediction

The plasticity parameters 8 = (64, ...,0g) for the reward-
prediction task converge on approximately the same point,
regardless of the environmental parameters (Fig.[dp). In par-
ticular, 3 — 1, 5 — —1, 6; — 0 for all other 4, and thus
the learning rule converges to:

AWy = np[03 X Ry + 05 Xy = 0p Xe(Re — ). (2)

Since by definition y; = g(W; X[I) = W, X! (g(x) = z in
this experiment) and R; = WX} + ¢ we get:

AW, = n, X, (W — W) XE +n,e X7 3)

Thus the distribution of AW, converges to a distribution
with mean O and variance depending on 7, and o and W
converges to W¢. So this learning rule will match the agent’s
weight vector with the vector of ingredient values in the en-
vironment.

We examine the robustness of the learning rule the EA
discovers by considering a slight modification of our task.
Instead of predicting the expected food value, the agent
now needs to decide whether to eat the presented food or
not. This is done by introducing a step-function nonlinearity
(9(x) = 1if 2 > 1 and O otherwise). Then the output y(¢)

is computed as:

4
0, if W, XTI <o. @

{1, if W,X7T >0,
Yt =

Instead of the MSE loss between prediction and actual value,
the fitness of the agent is now defined as the sum of the food
values it chose to consume (by giving y; = 1). Besides these
two changes, the setup of the experiments remains exactly
the same.

The qualitative relation between 7, and parameters of en-
vironment d., o and py, is preserved in the changed exper-
iment. However, the resulting learning rule is significantly
different (Fig. d). The evolution converges to the following
learning rule:

5
M Xol(6r 4+ 03)Re + (05 4 07)], yr = 1. )

AW, = {UpXt [0s Ry + 7], y = 0,
In both cases, the rule has the form AW, = 1, X;[a, Ry +
By]. Thus, the AW, is positive or negative depending on
whether the reward R, is above or below a threshold (y =
—fy /o) that depends on the output decision of the network
(y: =0or1).

Both learning rules have a clear Hebbian form (coordina-
tion of pre- and post-synaptic activity) and use the incom-
ing reward signal as a threshold. These similarities indicate
some common organizing principles of reward-modulated
learning rules, but their significant differences highlight the
sensitivity of the optimization process to task details.

The learning rate of embodied agents depends on
environmental variability

We now turn to the moving embodied agents in the 2D envi-
ronment. To optimize these agents, both the motor network’s
connections and the sensory network’s plasticity parameters
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Figure 5: a. The trajectory of an agent (blue line) in the 2D environment. A well-trained agent will approach and consume food
with positive values (green dots) and avoid negative food (red dots). b. The learning rate of the plastic sensory network eta,,
grows with the distance between environments d. ¢. and decreases with the frequency of environmental change. d. The fitness
of an agent (measured as the total food consumed over its lifetime) increases over generations of the EA for both the scalar and
binary readouts in the sensory network. e. The Pearson correlation coefficient of an evolved agent’s weights with the ingredient
value vector of the current environment (E1 - blue, Fy - red). In this example, the agent’s weights are anti-correlated with its
environment, which is not an issue for performance since the motor network can interpret the inverted signs of food.

evolve simultaneously. Since the motor network is initially
random and the agent has to move to find food, the num-
ber of interactions an agent experiences in its lifetime can
be small, slowing down the learning. However, having the
larger motor network also has benefits for evolution because
it allows the output of the plastic network to be read out and
transformed in different ways, resulting in a broad set of so-
lutions.

The agents can solve the task effectively by evolving a
functional motor network and a plasticity rule that converges
to interpretable weights (Fig. [Bh). After ~ 100 evolution-
ary steps (Fig.[5), the agents can learn the ingredient value
distribution using the plastic network and reliably move to-
wards foods with positive values while avoiding the ones
with negative values.

We compare the dependence of the moving and the static
agents on the parameters of the environment: d. and the
state transition probability py,.. At first, in order to simplify
the experiment, we set the transition probability to 0, but
fixed the initial weights to be the average of E; and Fbo,
while the real state is F>. In this experiment, the distance
between states d. indicates twice the distance between the
agent’s initial weights and the optimal weights (the environ-
ment’s ingredient values) since the agent is initialized at the
mean of the two environment distributions. Same as for the
static agent, the learning rate increases with the distance d,
(Fig.[3b).

Then, we examine the effect of the environmental tran-

sition probability p;, on the evolved learning rate 7,. In
order for an agent to get sufficient exposure to each envi-
ronment, we scale down the probability p;, from the equiv-
alent experiment for the static agents. We find that as the
probability of transition increases, the evolved learning rate
7p decreases (Fig. EF). This fits with the larger trend for
the static agent, although there is a clear difference when
it comes to the increase for very small transition probabil-
ities that were clearly identifiable in the static but not the
moving agents. This could be due to much sparser data and
possibly the insufficiently long lifetime of the moving agent
(the necessity of scaling makes direct comparisons difficult).
Nevertheless, overall we see that the associations observed
in the static agents between environmental distance d. and
transition probability p, and the evolved learning rate 7, are
largely maintained in the moving agents. Still, more data
would be needed to make any conclusive assertions about
the exact effect of these environmental parameters on the
emerging plasticity mechanisms.

Rule redundancy in the embodied agents

A crucial difference between the static and the moving
agents is the function the plasticity has to perform. While
in the static agents, the plasticity has to effectively identify
the exact value distribution of the environment in order to
produce accurate predictions, in the embodied agents, the
plasticity has to merely produce a representation of the en-
vironment that the motor network can evolve to interpret
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(b.) sensory networks (the environmental parameters here are d. € [0,1], o = 0 and p,. = 0.001). The step function (binary
output) network evolved a more structured plasticity rule (e.g., 63 > 0 for all realizations) than the linear network. Moreover,
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ingredient distribution compared to the learned weights for the thresholded network (d.)

adequately enough to make decisions about which food to
consume.

To illustrate the difference, we plot the Pearson correla-
tion coefficient between an agent’s weights and the ingredi-
ent values of the environment it is moving in (Fig. [5). We
use the correlation instead of the MSE loss (which we used
for the static agents in Fig.[3) because the amplitude of the
weight vector varies a lot for different agents and meaningful
conclusions cannot be drawn from the MSE loss. For many
agents, the learned weights are consistently anti-correlated
with the actual ingredient values (an example of such an
agent is shown in Fig. [5). This means that the output of
the sensory network will have the opposite sign from the
actual food value. While in the static network, this would
lead to very bad predictions and high loss, in the foraging
task, these agents perform exactly as well as the ones where
the weights and ingredients values are positively correlated,
since the motor network can simply learn to move towards
food for which it gets a negative instead of a positive sensory
input.

This additional step of the output of the plastic network
going through the motor network before producing any be-
havior has a strong effect on the plasticity rules that the em-
bodied agents evolve. Specifically, if we look at the emerg-
ing rules the top performing agents have evolved (Fig. [6h),
it becomes clear that, unlike the very well-structured rules

of the static agents (Fig. @), there is now virtually no dis-
cernible pattern or structure. The difference becomes even
clearer if we look at the learned weights (at the end of a sim-
ulation) of the best-performing agents (Fig. [6f). While there
is some correlation with the environment’s ingredient value
distribution, the variance is very large, and they do not seem
to converge on the “correct” values in any way. This is to
some extent expected since, unlike the static agents where
the network’s output has to be exactly correct, driving the
evolution of rules that converge to the precise environmental
distribution, in the embodied networks, the bulk of the pro-
cessing is done by the motor network which can evolve to
interpret the scalar value of the sensory network’s output in a
variety of ways. Thus, as long as the sensory network’s plas-
ticity rule co-evolves with the motor network, any plasticity
rule that learns to produce consistent information about the
value of encountered food can potentially be selected.

To further test this assumption, we introduce a bottleneck
of information propagation between the sensory and motor
networks by using a step-function nonlinearity on the output
of the sensory network (Eq.H). Similarly to the decision task
of the static network, the output of the sensory network now
becomes binary. This effectively reduces the flow of infor-
mation from the sensory to the motor network, forcing the
sensory network to consistently decide whether food should
be consumed (with the caveat that the motor network can
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still interpret the binary sign in either of two ways, either
consuming food marked with 1 or the ones marked with 0
by the sensory network). The agents perform equally well
in this variation of the task as before (Fig. E}i), but now, the
evolved plasticity rules seem to be more structured (Fig. [6b).
Moreover, the variance of the learned weights in the best-
performing agents is significantly reduced (Fig. [6d), which
indicates that the bottleneck in the sensory network is in-
creasing selection pressure for rules that learn the environ-
ment’s food distribution accurately.

Discussion

We find that different sources of variability have a strong
impact on the extent to which evolving agents will develop
neuronal plasticity mechanisms for adapting to their envi-
ronment. A diverse environment, a reliable sensory system,
and a rate of environmental change that is neither too large
nor too small are necessary conditions for an agent to be able
to effectively adapt via synaptic plasticity. Additionally, we
find that minor variations of the task an agent has to solve
or the parametrization of the network can give rise to signif-
icantly different plasticity rules.

Our results partially extend to embodied artificial agents
performing a foraging task. We show that environmental
variability also pushes the development of plasticity in such
agents. Still, in contrast to the static agents, we find that
the interaction of a static motor network with a plastic sen-
sory network gives rise to a much greater variety of well-
functioning learning rules. We propose a potential cause of
this degeneracy; as the relatively complex motor network is
allowed to read out and process the outputs from the plas-
tic network, any consistent information coming out of these
outputs can be potentially interpreted in a behaviorally use-
ful way. Reducing the information the motor network can
extract from the sensory system significantly limits learning
rule variability.

Our findings on the effect of environmental variability
concur with the findings of previous studies (Lange and
Sprekeler, 2020) that have identified the constraints that en-
vironmental variability places on the evolutionary viability
of learning behaviors. We extend these findings in a mech-
anistic model which uses a biologically plausible learning
mechanism (synaptic plasticity). We show how a simple
evolutionary algorithm can optimize the different parame-
ters of a simple reward-modulated plasticity rule for solv-
ing simple prediction and decision tasks. Reward-modulated
plasticity has been extensively studied as a plausible mecha-
nism for credit assignment in the brain (Florian, |[2007; Baras
and Meir, 2007; Legenstein et al., 2008) and has found sev-
eral applications in artificial intelligence and robotics tasks
(Burms et al. 2015} Bing et al., 2019). Here, we demon-
strate how such rules can be very well-tuned to take into
account different environmental parameters and produce op-
timal behavior in simple systems.

Additionally, we demonstrate how the co-evolution of
plasticity and static functional connectivity in different sub-
networks fundamentally changes the evolutionary pressures
on the resulting plasticity rules, allowing for greater di-
versity in the form of the learning rule and the resulting
learned connectivity. Several studies have demonstrated
how, in biological networks, synaptic plasticity heavily in-
teracts with (Butz et al.,|2014;Stampanoni Bassi et al.,[2019;
Bernaez Timon et al., 2022) and is driven by network topol-
ogy (Giannakakis et al.} 2023). Moreover, it has been re-
cently demonstrated that biological plasticity mechanisms
are highly redundant in the sense that any observed neural
connectivity or recorded activity can be achieved with a va-
riety of distinct, unrelated learning rules (Ramesh, [2023)).
This observed redundancy of learning rules in biological set-
tings complements our results and suggests that the function
of plasticity rules cannot be studied independently of the
connectivity and topology of the networks they are acting
on.

The optimization of functional plasticity in neural net-
works is a promising research direction both as a means to
understand biological learning processes and as a tool for
building more autonomous artificial systems. Our results
suggest that reward-modulated plasticity is highly adaptable
to different environments and can be incorporated into larger
systems that solve complex tasks.

Future work

This work studies a simplified toy model of neural network
learning in stochastic environments. Future work could be
built on this basic framework to examine more complex re-
ward distributions and sources of environmental variabil-
ity. Moreover, a greater degree of biological realism could
be added by studying more plausible network architectures
(possibly derived from connectomics data) and more sophis-
ticated plasticity rule parametrizations.

Additionally, our foraging simulations were constrained
by limited computational resources and were far from ex-
haustive. Further experiments can investigate environments
with different constraints, food distributions, and multiple
seasons as well as the inclusion of plasticity on the motor
parts of the artificial organisms.
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