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Abstract

Computational studies of the influence of different network parameters on the dynamic and

topological network effects of brain stimulation can enhance our understanding of different

outcomes between individuals. In this study, a brain stimulation session along with the sub-

sequent post-stimulation brain activity is simulated for a period of one day using a network

of modified Wilson-Cowan oscillators coupled according to diffusion imaging based struc-

tural connectivity. We use this computational model to examine how differences in the inter-

region connectivity and the excitability of stimulated regions at the time of stimulation can

affect post-stimulation behaviours. Our findings indicate that the initial inter-region connec-

tivity can heavily affect the changes that stimulation induces in the connectivity of the net-

work. Moreover, differences in the excitability of the stimulated regions seem to lead to

different post-stimulation connectivity changes across the model network, including on the

internal connectivity of non-stimulated regions.

Introduction

Pharmaceutical drugs that can pass through the blood-brain-barrier lead to changes in the

whole brain, which can result in severe side effects that have been documented in numerous

clinical studies [1, 2]. Moreover, for many patients these traditional approaches do not work

well in treating the symptoms of brain network disorders. Instead, targeted approaches that

only directly affect a small number of brain regions have been proposed. These techniques

range from localised opening of the blood-brain-barrier through focused ultrasound [3, 4], to

invasive and non-invasive brain stimulation [5–8], and, when no alternative options are
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suitable, to surgical removal of brain tissue [9, 10]. The problem then is to choose the right set

of target regions for individual patients to maximize treatment effects and to minimize side

effects.

Parkinson’s disease and epilepsy are diseases where targeted approaches are already rou-

tinely used, when drug treatment is insufficient. For focal epilepsy, where medication is inef-

fective, resective surgery of the affected regions is often used as a treatment. However post-

operative seizure remission is around 50–70% [11, 12]. The reoccurrence of seizures after sur-

gery could be due to incomplete removal of the required target regions [13] or due to surgery

causing remaining brain regions to become new starting points for seizures. For the latter

option, it will be crucial to develop computer models of long-term effects of interventions.

The same challenge occurs for brain stimulation in epilepsy patients where no tissue is

resected but where the stimulation of a target region, with reduction of epileptogenic activity in

that region, could potentially cause other non-stimulated regions to become starting points for

seizures. Targeted brain stimulation in epilepsy could include deep brain stimulation (DBS),

optogenetic stimulation [14] (www.cando.ac.uk), and non-invasive techniques (transcranial

current stimulation, TCS; transcranial magnetic stimulation, TMS). Moreover, techniques used

in the treatment of other diseases, like the coordinated reset [15, 16] method (used for treatment

of Parkinson’s) that aims to desynchronise neuronal populations (pathological synchronization

being a major feature of epilepsy) could potentially be used in treating epilepsy. The effective-

ness of the methods used varies [7] and when it comes to TCS–one of the non-invasive meth-

ods–there are of contradictory results concerning its efficacy for treating epilepsy [17–22].

One of the main concerns with TCS is whether the effects of stimulation would remain

after the stimulation has ended [23]. Some studies have shown that the positive physiological

effects of stimulation can outlast the stimulation session for a long period while others have

shown diminishing effects after the stimulation session has ended. Specifically [24–26] have

observed positive post-stimulation effects lasting for a period of 2, and more than 4 months

respectively. On the other hand [27] observed anti-seizure effects for a period of 48 hours after

stimulation but also a clinically significant reduction of those effects during a subsequent

period of 4 weeks. To use computational models to assess the effect of brain stimulation, it is

therefore, necessary to observe long-term changes.

At the moment, computational studies have only examined the short-term effects of TCS,

i.e. during stimulation [28–32]. Two computational studies have used neural mass models [33,

34] to examine the immediate effects of stimulation on the activity of the stimulated areas.

Notably, one study used modified Wilson-Cowan model to study effects a few minutes after

anodal or cathodal stimulation [34]. The aforementioned studies did not account for plasticity

in their models, and so did not investigate the effects of stimulation on brain connectivity,

which is a proposed mechanism [35–37] by which TCS can affect brain activity in the long

term. The only computational study to our knowledge that does examine the effects of neuro-

stimulation on brain connectivity [38] focuses on DBS instead of TCS and examines Parkin-

son’s disease instead of epilepsy with the aim of identifying optimal stimulation locations.

In this study, we used a network of coupled modified Wilson-Cowan oscillators to examine

how different aspects of the pre-stimulation brain connectivity affect the changes induced dur-

ing and after a stimulation session. For this, connectivity data acquired from healthy and epi-

leptic subjects was used to couple the nodes of the model network (to examine the effects of

the inter-region connectivity and potential differences between the two groups) and two differ-

ent versions of the stimulated nodes were examined (to see the effects of local excitability in

the induced global changes), aiming to model healthy and epileptogenic brain regions respec-

tively. Using this simplified model network, we simulated a single session of brain stimulation

and the subsequent changes in connectivity for a period of 24 hours.
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Our observations indicate long-term changes after the initial stimulation session in terms

of both structural connectivity changes and changes in local and global network dynamics.

Our analysis focused on connectivity changes as only such changes at the structural level can

explain the behaviour of networks a long time after the initial stimulation and thus could

potentially explain the variable final outcomes of treatment [39]. Our findings indicate that,

simulated effects of brain stimulation differ when brain connectivity networks of healthy con-

trols and epilepsy patients are used and moreover, stimulation leads to distinct long-term

changes in the internal connectivity of non-stimulated regions, which appear hours after the

end of the stimulation session.

Methods

Patient data

In order to initialise the connectivity of our models, we used data from 39 subjects, 19 of

whom are suffering from left temporal lobe epilepsy. The subjects were selected from the data-

set presented in [40, 41]. Written informed consent was obtained, signed by all participants,

and conformed to local ethics requirements. The ethical review board of the medical faculty of

Bonn gave IRB approval (032/08) and all experiments were performed in accordance with rele-

vant guidelines and regulations. T1 weighted MRI scans and diffusion tensor imaging (DTI)

data were obtained using a 3 Tesla scanner, a Siemens MAGNETOM TrioTim syngo

(Erlangen, Germany). The T1 images were obtained using 1mm isovoxel, TR = 2500ms and

TE = 3.5ms. The DTI data used 2mm isovoxel, TR = 10,000ms, TE = 91ms and 64 diffusion

directions, b-factor 1000s mm−2 and 12 b0 images. In both caes FoV was 256mm.

To create the structural connectomes, FreeSurfer was used to obtain surface meshes of grey

and white matter boundaries from the MRI data and to parcellate the brain into regions of

interest (ROI) based on the Desikan atlas [42, 43]. This process identified 82 ROIs which

spanned cortical and subcortical regions (Nucleus accumbens, Amygdala, Caudate, Hippo-

campus, Pallidum, Putamen and Thalamus). Streamline tractography was obtained from DTI

images using the Fiber Assignment by Continuous Tracking (FACT) algorithm [44] through

the Diffusion toolkit along with TrackVis [45]. First, we performed eddy-correction of the

image by applying an affine transform of each diffusion volume to the b0 volume and rotating

b-vectors using FSL toolbox (FSL, http://www.fmrib.ox.ac.uk/fsl/). After the diffusion tensor

and its eigenvector was estimated for every voxel, we applied a deterministic tractography algo-

rithm [44] initiating a single streamline from the centre of each voxel. Tracking was stopped

when the angle change was too large (35 degree of angle threshold) or when tracking reached a

voxel with a fractional anisotropy value of less than 0.2 [46].

The centre coordinates of each voxel were the start of a single streamline, the total number

of streamlines never exceeded the number of seed voxels. The number of connecting stream-

lines were used to determine the connectivity matrix (S), as the streamline count has recently

been confirmed to provide a realistic estimate of white matter pathway projection strength

[47]. Distance matrices were also constructed using the mean fibre length of the streamlines

connecting each pair of ROIs (Fig 1). The surface area of each ROI was found using FreeSurfer

for cortical regions and for subcortical areas by computing the interface area to the white mat-

ter in T1 space [48].

Modified Wilson-Cowan model

Our model consists of a network of 82 coupled modified Wilson-Cowan oscillators, each rep-

resenting a single brain region. In order to include divisive inhibition into our model, each

W-C node consists of one excitatory and two inhibitory populations (Fig 2). The first
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inhibitory population represents interneurons firing at the dendrites of the postsynaptic neu-

rons (subtractive inhibition) and the second inhibitory population represents interneurons fir-

ing directly at the soma of the postsynaptic neurons, delivering divisive inhibition. For the

Fig 1. The connectivity matrix (A) obtained by the process described in the section Patient data for a healthy subject and (B) the network of nodes

corresponding to that connectivity showing the positions of the brain regions represented by the network’s nodes. The strength of each connection

(derived from the number of streamline counts between brain regions) is indicated by its colour.

https://doi.org/10.1371/journal.pone.0221380.g001

Fig 2. A diagram of a Wilson-Cowan node used in the model. The blue arrows indicate an excitatory connection

while the red and green arrows indicate subtractive and divisive inhibitory connections respectively. The weights of

each connection are indicated above every arrow. The numbers in the orange parentheses are the weight values that

differ for the stimulated (epileptogenic) regions in the epileptic patients.

https://doi.org/10.1371/journal.pone.0221380.g002
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implementation of the model we followed the methodology and notation of [49]. All the nota-

tions that we use for the description of the model are summarised in Table 1.

Of course, the model described in [49] has been designed to simulate the connectivity of a

cortical microcircuit and not the connectivity of sub-cortical regions. Still, a number of studies

[50–52] have shown the presence of shunting inhibition (in addition to regular subtractive

inhibition) in many of the subcortical areas we used in our study. Thus, we felt that the inclu-

sion of both inhibitory populations in the nodes representing subcortical regions was justified.

According to this approach, the activity of each brain region is represented by a Wilson-

Cowan model, governed by the following delayed differential equations (DDE’S):

te
dEiðtÞ
dt
¼ � EiðtÞ þ ke � EiðtÞð Þ

� Fe wðiÞ1 �EiðtÞ þ
P82

j¼1;j6¼iWji � Ejðt � delijÞ þ Pe; w
ðiÞ
2 � IsiðtÞ; w

ðiÞ
3 � IdiðtÞ

� �
ð1Þ

ti
dIsiðtÞ
dt
¼ � IsiðtÞ þ ki � IsiðtÞð Þ � Fi wðiÞ4 �EiðtÞ þ Ps; 0; 0

� �
ð2Þ

ti
dIdiðtÞ
dt

¼ � IdiðtÞ þ ki � IdiðtÞð Þ � Fi wðiÞ5 � EiðtÞ þ Pd;w
ðiÞ
6 � IsiðtÞ þ wðiÞ7 � IdiðtÞ; 0

� �
ð3Þ

To account for the divisive inhibition a modified input-output function is required:

Fj x; y; að Þ ¼
1

1þ exp � aj
1þa x � ðyj þ yÞ
� �h i �

1

1þ exp ajyj
1þa

h i ð4Þ

For, j2{e,i}, where e stands for excitatory and i stands for inhibitory. The inhibitory popula-

tions have the same input-output function and the same constants since they are assumed to

respond to inputs in a similar way. However, the difference in the type of inhibition those

Table 1. Notation used in the text and interpretation.

Notation Interpretation

Ei(t) Activity of the excitatory population of node i at time t

Isi(t) Activity of the subtractive inhibitory population of node i at time t

Idi(t) Activity of the divisive inhibitory population of node i at time t

wðiÞk Weight of the k-th connection of node i

Wij Weight of the connection between nodes i and j

delij Time delay between nodes i and j

Pe External input of the excitatory population

Ps External input of the subtractive inhibitory population

Pd External input of the divisive inhibitory population

Fe(x,θ,a) Sigmoid function for the excitatory population

Fi(x,θ,a) Sigmoid function for the Inhibitory populations

θ Variable of the sigmoid representing subtractive modulation

a Variable of the sigmoid representing divisive modulation

θe Minimum displacement in case no subtractive inhibition is delivered to the excitatory population

ae Maximum slope in case no divisive inhibition is delivered to the excitatory population

θi Minimum displacement in case no subtractive inhibition is delivered to the inhibitory populations

ai Maximum slope in case no divisive inhibition is delivered to the inhibitory populations

ke Constant for the excitatory population

ki Constant for the inhibitory populations

https://doi.org/10.1371/journal.pone.0221380.t001
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neurons deliver to the excitatory population is due to their different targeting onto the post-

synaptic neurons, that is, somatic vs dendritic.

The constant kj, j2{e,i} is given by:

kj ¼ limx!1Fjðx; y; aÞ ¼
exp ajyj

1þa

h i

1þ exp ajyj
1þa

h i ; j 2 e; if g ð5Þ

As is the case with the sigmoid function the constant kj is the same for both inhibitory

populations.

In our study, the constants of the sigmoid were set at θe = 4, θi = 3.7, ae = 1.3, ai = 2, following

the values used at [49]. Moreover, the external inputs of the inhibitory populations were set to

Ps = Pd = 1 while the input of the excitatory population was set to Pe = 2. Other values were con-

sidered for Pe ranging from 1.1 to 4 (the range where the system produces oscillations) with

results similar to the ones presented here. Providing no input to the inhibitory populations

(Ps = Pd = 0) results in a lack of long term stable oscillations and therefore we restricted the

parameter value to P>0. A detailed description of all notation used is given in Table 1.

Connectivity and plasticity

The weights Wij between network nodes representing brain regions were initialized according

to the brain anatomy of each patient using the data described in the section ‘‘Patient data”.

Specifically, given the matrix S of the streamline counts for an individual subject we followed

the original study [40] and initialised the connectivity matrix M as:

Mij ¼
0:1 � logðSijÞ; Sij > 0

0; Sij ¼ 0
ð6Þ

(

This connectivity matrix was the only element of our study taken from biological data,

everything else refers to simulations (and not experimental results) using the model described

in this section.

The connectomes of healthy and epileptic patients did not show any apparent differences

and due to the small dataset and very high dimensionality of the data (82x82 matrices) training

(and testing) a classifier, to examine the possibility of distinguishing between the two groups at

this level, was deemed unfeasible.

During the simulation, the weights were updated every 10 milliseconds by the following

learning rule:

Dwij ¼ c � Eiðt � delijÞ � ðEjðtÞ � Ejðt � 1ÞÞ ð7Þ

We chose this simple rule in order to apply a simple form of Hebbian plasticity [53, 54] (if

high activity in a pre-synaptic node is followed by an increase of activity in the post-synaptic

node, the connection weight increases, otherwise it decreases) in neuron populations. The

learning rate was set at c = 0.1. Other values were considered, and similar results were obtained

with the only difference being the speed of weight change. Still, the pattern of activity remained

the same for all the values we examined as can be seen in Fig 3.

The weight matrix was normalised after each update—to avoid runaway plasticity as indi-

cated by the findings of [55, 56]—by the following rule:

Wij  
Wij

P82

i¼1
Wij

ð8Þ
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For the internal weights wðiÞ1 ; . . . ;wðiÞ7 of each node we used two different sets of initial values.

The first set of values was chosen to represent the connectivity of a healthy brain region while

the second set was chosen to represent an epileptogenic region. The values of the healthy region

were decided after an extensive parameter search, starting at the values used by [49] and exam-

ining values between 8 and 21 (the range at which the system produces oscillations). The values

we selected lead to high amplitude oscillations in all three populations during the first hours of

the simulation. The amplitude of the oscillations gradually decreases and stabilizes after some

hours. It must be noted that the final values were chosen to facilitate the dynamics of the system

and may not correspond to the connectivity of a real biological system. Still, using different

parameters usually resulted in oscillations of different amplitude and consequently slower stabi-

lization periods, but as a general rule did not lead to radically different behaviour in the system.

After the values of the node representing a healthy region were established, the values of the

nodes representing epileptogenic regions were derived by increasing the weights of excitatory

connections and reducing the weights of the inhibitory connections. Those changes aimed at

increasing the excitability of those nodes (increased excitatory and decreased inhibitory input)

in order to simulate the dynamics associated with epilepsy. The difference in behaviour of the

epileptogenic nodes was small but observable (oscillations of increased amplitude and occa-

sional seizure-like activity when the input to their excitatory populations was increased), as

with the original connection weights, choosing different values led to slightly different results

(the more excitable a node is, the greater the effect of stimulation), but the main observations

remained the same. The values chosen are presented in Fig 2.

The weights w1,w2,w3,w4,w6 were updated every 10 milliseconds according to a modified

version of the rule we used for the external connections with subsequent normalization after

every update.

DwðiÞk ¼ c � PreðtÞ � ðPostðtÞ � Postðt � 1ÞÞ ð9Þ

Fig 3. The global connectivity difference measures of two epileptic (A,B) and two healthy (C,D) subjects for different learning rates: c = 0.05

(blue), c = 0.1 (red) and c = 0.2 (yellow). The effect of stimulation on the global connectivity is different depending on the learning rate but the

overall pattern remains similar. The green line at the x-axis indicates the period of stimulation.

https://doi.org/10.1371/journal.pone.0221380.g003
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where Pre(t), Post(t) are the activities of the presynaptic and the postsynaptic populations, respec-

tively. Several proposed mechanism of internal plasticity were considered, but due to the lack of a

consensus about a general mechanism of inhibitory plasticity [53, 57]—especially in neural mass

models—we chose to use this simple intuitive rule, similar to the rule we used for the external con-

nections. The most commonly used learning rule for inhibitory plasticity, introduced in [58]

could not be used in this model due to long term instability in the network’s dynamics.

For the normalization, we employed the same rule used for the global connectivity:

wðiÞk  
wðiÞk

P7

k¼1
wðiÞk

ð10Þ

Since there has been little research on how inhibitory to inhibitory plasticity could be

implemented in a neural mass model, the weights w5 and w7 were kept stable. The learning

rate was set at c = 0.05.

Finally, the delays were initialized for each patient, as the length of the fibres connecting

two brain regions divided by the speed of spike propagation. For the calculation of the delays

we assumed that activity propagates with the same speed in all connecting fibres, which was

set at 7 m/s, following the convention used at [59, 60]. To calculate the distance between

regions, we selected the fibre trajectory length—which we calculated using deterministic track-

ing of diffusion tensor imaging data—instead of the Euclidian distance in order for the delays

to be more biologically realistic.

Stimulation

Each session of stimulation was modelled as a decrease of 50% (the stimulation is cathodal,

due to better reported experimental results [21]) in the external input of three nodes represent-

ing the brain regions most commonly responsible for seizures in these patients (amygdala, hip-

pocampus and parahippocampal gyrus), for a period of 30 minutes. Despite two of these brain

regions being sub-cortical, the ability of transcranial stimulation to affect them has been dem-

onstrated in past studies [61–63]. Stimulation in all cases started at t = 200s after the beginning

of the simulation. This initial period was allowed for the oscillations of the system to stabilize

before stimulation begins.

The choice of stimulation parameters was made in order for the model to correspond to a

working protocol of TCS presented in [64]. Due to the computational constraints of such large

simulations [65], we modelled only one session and an additional resting period of 24 hours.

Implementation and analysis of results

Simulations were run for three distinct groups of subjects, according to the global connectivity

data and model used:

1. Healthy subjects: The global connectivity data were derived from the healthy individuals

and the simulation was performed using a model where no epileptogenic (particularly excit-

able) nodes are present.

2. Epilepsy patients: The global connectivity data were derived from individuals suffering

from left temporal lobe epilepsy and the simulation was performed using a model where

the stimulated nodes were modelled as epileptogenic (highly excitable)

3. Control subjects: The global connectivity data were derived from individuals suffering from

left temporal lobe epilepsy but the simulation was performed using the “healthy” model,

where the stimulated nodes are not distinct in terms of excitability from all other nodes.

Computational modelling of the effects of brain stimulation on the connectivity of epileptic patients
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After the initial choice of connectivity and model parameters, two simulations–with and

without stimulation- run in parallel for a period of 24 hours with snapshots of the weight

matrices taken every 50 seconds. The large system of DDE’s (246 equations) was solved by

using Matlab’s dde23 delayed differential equation solver (The code for the model can be

found in the following repository: https://github.com/MGiannakakis/Epilepsy_Simulation)

The effect of the stimulation on the connectivity at every time step was measured in the fol-

lowing ways:

1. The global effect of the stimulation on the connectivity of the brain was measured as the

difference (%) of the connectivity matrices M = (Wij):

DðtÞ ¼ 100 �

P82

i;j¼1
jW 0

ijðtÞ � WijðtÞj
P82

i;j¼1
jWijðtÞj

ð11Þ

where W0
ij is the weight between nodes i and j at time t after stimulation and Wij(t) is the

weight between nodes i and j at time t without stimulation. This measure represents the effect

stimulation has on the internode connections of the brain.

2. The effect of the stimulation on the internal connectivity of each node (local effect) was

measured as the difference (%) of the internal weights in the stimulated and the non-stim-

ulated versions:

diðtÞ ¼ 100 �

P7

k¼1
jwðiÞ0k ðtÞ � wðiÞk ðtÞj
P7

k¼1
jwðiÞk ðtÞj

ð12Þ

where i = 1,. . .,82 the brain node, wðiÞ0k ðtÞ is the k-th weight of the i-th node at time t in the

stimulated version and wðiÞk ðtÞ is the i-th weight of the k-th node at time t in the non- stimu-

lated version. These measures represent the effect of stimulation on the internal connectivity

of each brain region.

Connectivity measure

In order to study the effect of stimulation on the nodes that received no direct stimulation, we

examined several connectivity metrics that could explain such an effect. One of those metrics

is the Jaccard index. The Jaccard index of two nodes measures the similarity in connectivity

(the common neighbours) and is defined as:

J i; jð Þ ¼
jGðiÞ \ GðjÞj
jGðiÞ [ GðjÞj

ð13Þ

Where Γ(i) is the set of nodes connected to node i and |Γ(i)\Γ(j)|,|Γ(i)[Γ(j)| are the num-

ber of elements in the sets Γ(i)\Γ(j) and Γ(i)[Γ(j) respectively.

In our study, we defined the Jaccard index of a secondary node i to be:

J ið Þ ¼
1

3
� ðJðp; iÞ þ Jða; iÞ þ Jðh; iÞÞ ð14Þ

Where p,a,h are the stimulated nodes.

Results

Our results are organized in two sections. Firstly, we simulate the effect of stimulation on the

overall connectivity of the network for each group of subjects. Secondly, we simulate the
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changes stimulation seems to induce in each node representing a brain region with emphasis

at the stimulated nodes which represent the brain regions most often associated with seizure

generation (amygdala, hippocampus and parahippocampal gyrus).

Statistical results will be presented for the rest of the paper as: X ± Y, where X is the mean

and Y is the standard deviation of the referenced dataset. All the p-values were calculated

using a two-tailed t-test.

The network presents a larger global connectivity change at the end of the

stimulation for epilepsy patient connectomes

The effect of stimulation on the inter-node connections in our model follows a similar pattern

in all subjects. Specifically, during the period of stimulation, the global effect measure D(t)
increases steadily (Fig 4), reaching a local maximum at the end of stimulation (t = 2000 s). A

first difference between the three groups can be observed at this point since the value of D(t) at

the end of the stimulation session (30 min) is on average significantly (p-value < 0.0001)

greater for the epileptic subjects (2.9730% ± 0.7301) than the healthy subjects (1.9671% ±
0.3261) and the control subjects (1.7609% ± 0.5290). The similarity of the healthy and control

groups in contrast to the epileptic group suggests that the increased excitability of the stimu-

lated nodes and not the initial global connectivity is the main driver of the changes of the

global effect measure. Indeed, the global connectivity on its own seems to make the healthy

Fig 4. The effect of stimulation (difference from the non-stimulated version) on the global connectivity (A) and the

connectivity of the stimulated nodes (B) of a healthy subject model. The orange line on the x-axis notes the duration of

the stimulation session. The yellow vertical line notes the point of stabilization of the local measure d, consistently

observed around t� 8h for healthy and control subjects.

https://doi.org/10.1371/journal.pone.0221380.g004
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subjects more excitable, since the values of D(t) were slightly higher for the healthy than the

control group (although the difference was not statistically significant).

After the end of stimulation session, the global effect D(t) keeps fluctuating for the remain-

der of the simulation with a clear increasing trend in the majority of subjects. The rate of this

increase varies greatly from subjects to subject and it was calculated as the rate r = D(t0)/D(t1),

where t0 = 2000s is the end of the stimulation session and t1 = 24h the end of the simulation.

For all subjects the value d varies greatly (0.5846% ± 0.2751) and we can also observe a small

difference (statistically insignificant) between the values of healthy subjects (0.5358% ±
0.2128), the similar values of control subjects (0.5372% ± 0.1609) and the slightly greater values

of epileptic subjects (0.6328% ± 0.2533) which is not statistically significant (S1 Fig). Thus, the

differences between the groups are attributable to different effect of stimulation and not the

post-stimulation change in connectivity.

Finally, in order to examine the extent to which the initial global connectivity determines

the development of the global difference measure D, we measured the correlation between D

in control and epileptic subjects initialised with the same connectivity data and found it to be

higher (0.7747 ± 0.1102), than the average correlation between random pairs of control and

epileptic subjects (0.6199 ± 0.3213). This, suggests that although the scale of change is mainly

determined by the excitability of the stimulated nodes, the exact global connectivity does (at

least partially) determine the development of the global effect measure.

The inclusion of excitable nodes leads to a larger change in the local

connectivity of the stimulated nodes during but not after stimulation

In the nodes that received direct stimulation (representing the amygdala, hippocampus and

parahippocampal gyrus), the effect on the connectivity was most prominent during the period

of stimulation, resulting in a constant increase of the local effect measure dk(t) in all three

nodes. Thus, the local measure invariably reaches a global maximum at the end of the stimula-

tion session (t = 2000 s). As with the global connectivity, the effect on the epileptic subjects is

greater than the effect on the other two groups (p-value < 0.0001 for all three nodes). Specifi-

cally, the average effect for all three nodes on a healthy subject is 0.4746% ± 0.0509, in a control

subject is 0.3853% ± 0.0427 and on an epileptic subject is 1.0794% ± 0.0264.

A difference from global connectivity is that in this case the difference between healthy and

control subjects is clearly significant (p-value < 0.0001). This suggests that the brain connec-

tivity of epileptic patients conditions the epileptogenic regions to be less excitable than in

healthy individuals. Of course, the internal connectivity that makes these regions highly excit-

able masks this effect as we observed from the metrics of the epileptic group. Still, this finding

seems to suggest that the inter-regional connectivity of epileptic patients tends to limit the

excitability of epileptogenic regions.

After the end of the stimulation session, the local measure dk(t) changes similarly in the

healthy/control groups but very differently in the epileptic group.

In the healthy/control subjects, the end of the stimulation session (30 min) is followed by a

slow decrease in the value of the local effect dk(t). Around 8 hours after the end of the stimula-

tion session, the difference measure stabilizes at dk(t)�0.1%, for all three nodes (Fig 4), for a

representative subject. The local effect measure dk(t) of a node is considered to be stabilized at

time t if the Coefficient of variation of the values of dk(t) for the 5 minutes prior to t is less than

0.3. After that point, there may be some small oscillation in the value of dk(t) but the change is

minimal.There is much greater variation in the epileptic subjects, both between the nodes of

the same subject as well as between equivalent nodes (representing the same brain region) of

different subjects (Fig 5). Immediately after the end of the stimulation session and for a period
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lasting 5–6 hours, the local effect dk(t) is sharply (more than in the healthy/control subjects)

decreasing for all 3 nodes. With the exception of two subjects where there is a short increasing

period in the values of the amygdala and the hippocampus, dk(t) is strictly decreasing during

this period for all three nodes of every subject. It should be noted that in almost all the epileptic

subjects (18 out of 19), the connectivity of the node representing the parahippocampal gyrus is

behaving differently than the connectivity of the nodes representing the other two stimulated

regions. The local effect (measured by dk(t)) on the parahippocampal gyrus node is diminish-

ing faster than the equivalent measures of the other two regions, reaching values close to zero

at the end of this first period.

For the remainder of the simulation, each subject presents different behaviour and the vari-

ous stimulated nodes also present differences in each subject. In 10 of the subjects the local

effect on the node representing the parahippocampal gyrus remains at the low levels it reached

in the end of the decrease period (1–5/6 hours) with some minimal increases. In the remaining

9 subjects the local effect on that node starts increasing at some point between 8–12 hours

after the end of stimulation and continues to increase for the remainder of the simulation

reaching values comparable with those of the other two regions. The nodes representing other

two stimulated regions (amygdala and hippocampus) behave almost identically in each subject.

After the end of the first period of decrease the local effect measures of these areas stabilize in

10 of the subjects and decrease very slowly in 6 of the subjects for the remainder of the stimula-

tion. In the remaining 3 subjects, the local effect measure increases for a period of 1.5–2 hours

Fig 5. The local effect of the 3 stimulated nodes (in red) and 6 secondary nodes (in green) for a healthy subject (A) and an epilepsy patient (B). The location of these

nodes in our model is shown in (C) for the brain connectivity of the epileptic subject.

https://doi.org/10.1371/journal.pone.0221380.g005
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until it reaches values much higher than those of the other subjects (dk(t)�0.55), after that

point the effect on those areas begins to slowly decrease.

At the end of the simulation, we can observe that the final values of dk(t) for the epileptic

subjects (0.1412% ± 0.0882) are slightly greater than those of the healthy subjects (0.1165% ±
0.0275) which in turn are slightly greater than those of the control subjects (0.1037% ± 0.0400)

in the nodes that received stimulation. Still that differences are not statistically significant. This

implies that the initial difference between healthy/control and epileptic subject does not lead

to a long-term difference in the stimulation effects.

Some non-stimulated nodes show local connectivity changes after the end

of the stimulation

The effects of stimulation can be seen not only on the internal connectivity of the nodes that

are stimulated directly but also on the connectivity of other nodes that receive no direct stimu-

lation (Fig 2).

Specifically, in all groups, the local effect dk(t) of several nodes starts increasing and reaches

a peak shortly after the end of the stimulation session. It should be noted that the change in

those nodes does not absolutely coincide with the stimulation session, rather it happens shortly

afterwards, possibly due to the time delays. Moreover, unlike the directly stimulated nodes

where a difference can be observed between the healthy/control and epileptic model groups,

no such difference can be observed in the values of those secondary regions.

After this initial increase, the local effect on all secondary nodes usually decreases and

seems to stabilize after a period of about 8 hours. For the majority of subjects (29 out of 39) the

values that the difference measures have at this point will be very close to the values they will

have at the end of the stimulation. In most cases, the final value of the effect measures for those

nodes are very close to the values of the other non-stimulated nodes that were not affected by

the stimulation, but in some cases the final values for some of these secondary nodes (espe-

cially the entorhinal cortex) are much closer to–and in some cases higher than—the values of

the stimulated nodes. Interestingly, in some epileptic subjects (5 out of 19) the local effect mea-

sure of some secondary nodes began to suddenly increase hours after the stimulation session

when they were apparently stabilised for some time. This unpredictable behaviour suggests

than even in the very simplified model used for this study, the dynamics of plasticity are not

easily predictable for a timescale of hours. That is an indication that long-term effects that can-

not be predicted from the initial response to stimulation.

Still, despite the fact that we do not know the exact cause of these post-stimulation changes,

they seem to appear more frequently in some nodes than in others and several factors could

explain why those nodes in particular were affected. Specifically, the brain regions that these

nodes represent are characterized by increased connectivity with the stimulated regions as

well as by a small Euclidian distance from the stimulated regions. Additionally, the effect the

connections with the stimulated regions seemed to be greater than average (increased connec-

tion weights). Finally, the Jaccard index (common neighbours) of the affected nodes and the

stimulated nodes was higher than in regions that were not affected. Moreover, the frequency

of excitation among the six most commonly excited nodes (Fig 6) is correlated with the afore-

mentioned metrics of the corresponding brain regions. For example, the node representing

the entorhinal cortex that was affected in 17 of the subjects, scores higher in all the metrics

(connectivity, Jaccard index, etc.) than the node representing the putamen which was excited

in 2 of the subjects. A ranking of all the regions according to those metrics is given in Table 2.

Moreover, the corresponding absolute values are presented in the supplementary information

(S1 Table).
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We wondered whether these observed secondary effects may have clinical significance. The

patients from whom the data originated had received resective surgery (not stimulation) of the

seizure causing brain regions (amygdalohippocampectomy) and the outcome of these surger-

ies was known for a number of them (17 subjects). We found that the increased effect in the

secondary nodes that was observed in the epileptic group was weakly correlated with a worse

outcome of resective surgery: Epileptic subjects who presented a long-lasting effect on second-

ary nodes after stimulation within our model, i.e. higher values of the local effect measures

compared with other non-stimulated nodes at the end of the simulation, were on average less

likely (3.225 ± 1.220 on the ILAE classification scale) than those who did not present such

effects (2.011 ± 1.110) to benefit from surgery (p-value = 0.0484, Cohen’s d = 1.042). Still,

given the important differences between surgery and stimulation as well as the small sample

size, it is very possible that this finding is not meaningful and further research with larger sam-

ples and experimental data from patients who received brain stimulation is required to evalu-

ate any potential clinical application of this framework.

Discussion

We investigated the effects of simulated cathodal TCS on the brain connectivity of healthy and

epileptic subjects using a network of coupled Wilson-Cowan oscillators, which have been

modified to include two inhibitory populations (for subtractive and divisive inhibition). Our

results show that stimulation affects the simulated brain connectivity—a finding that has been

confirmed by experimental studies [66]—as well as a significant difference between the effect

stimulation has on different groups of subjects. Additionally, we have observed a great variabil-

ity in the behaviour of our model after the end of the stimulation session, which can only be

attributed to the differences in the initial patient-derived connectivity used for each simulation

(the only factor differentiating the simulations of each group). Finally, we have observed that

Fig 6. Metrics that could explain why secondary regions were affected. The most frequently excited secondary nodes,

representing the Entorhinal Cortex, Fusiform Gyrus, Lingual Gyrus, Temporal Pole, Thalamus and Putamen of the left

hemisphere, score higher in a variety of metrics that could explain why they are more affected than other nodes. Specifically,

the frequency of Secondary excitation (A) is somewhat correlated with the amount of connections each node has with other

regions (B) and especially the stimulated regions (E), as well as the average length of the connections with the stimulated

regions (D). Moreover, the final value of the local effect d (C) as well as Jaccard index with the stimulated regions (F), seem

to be strongly correlated with the frequency of secondary excitation.

https://doi.org/10.1371/journal.pone.0221380.g006
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the effects of stimulation are not limited to the stimulated brain areas. In some patients the

internal connectivity of a number of non-stimulated areas is affected by the stimulation of

neighbouring areas and this seems to have a (weak but observable) correlation with a worse

surgery outcome.

Table 2. A ranking of the nodes representing the regions of the left hemisphere according to several metrics that could explain secondary (non-stimulated) excita-

tion. The table shows the ranking according to the frequency of those secondary effects, the local effect measure at the end of the simulation, the number of regions they

are connected with and how many of these neighbouring regions are stimulated, the average effect of these stimulated regions (this was represented as the sum of the

weights of the connections with stimulated regions divided with the sum of all weights) and their average Euclidian distance from the stimulated regions. The most com-

monly affected regions are shown in bold.

Node

Index

Brain region with position

corresponding to the network

node

Value after

stimulation

Value

after 24h

Connectivity Connections with

stimulated regions

Effect of

stimulated

regions

Euclidian Distance

from the stimulated

regions

Jaccard

Index

1 Banks of S.T.S 19 36 36 27 27 14 38

2 Caudal A.C 34 29 32 28 28 25 37

3 Caudal M.F 37 38 35 29 29 31 35

4 Cuneus 6 31 19 17 15 33 16

5 Entorhinal C. 1 1 28 1 1 1 1

6 Fusiform G. 2 3 13 2 2 4 2

7 Inferior Parietal 12 19 18 24 25 30 32

8 Inferior Temp. 14 11 27 12 10 7 6

9 Isthmus 7 13 20 4 4 15 7

10 Lateral Occipital 9 16 15 30 30 32 10

11 Lateral Orbit. 21 28 8 20 23 17 14

12 Lingual gyrus 3 5 14 5 5 16 5

13 Medial Orbit. 36 24 4 9 12 20 20

14 Middle Temp. 27 30 22 31 31 10 25

15 Paracentral 23 34 21 32 32 34 30

16 Pars Opercularis 30 33 26 33 33 18 29

17 Pars Orbitalis 33 26 33 21 19 26 28

18 Pars Triangular is 28 22 25 22 20 23 22

19 Pericalcarine 13 12 30 18 16 29 8

20 Postcentral 24 14 10 13 14 24 18

21 Posterior Cing. 35 21 17 34 34 19 26

22 Precentral 26 15 5 14 17 22 17

23 Precuneus 11 32 6 11 13 28 15

24 Rostral Ant. Cin. 29 23 31 35 35 27 36

25 Rostral M. Front. 31 20 12 23 21 35 27

26 Superior Frontal 20 35 2 19 24 36 23

27 Superior Parietal 15 17 9 16 18 37 19

28 Superior Temp. 17 25 11 36 36 9 24

29 Supramarginal 10 27 16 37 37 21 33

30 Frontal Pole 38 18 38 25 22 38 34

31 Temporal Pole 4 4 23 6 6 12 3

32 Trans. Temp. 18 37 37 38 38 8 31

33 Insula 25 9 1 8 11 6 11

34 Thalamus 5 2 7 3 3 5 4

35 Caudate 22 7 24 15 9 13 13

36 Putamen 16 8 3 7 8 3 9

37 Pallidum 8 6 29 10 7 2 12

38 Accumbens 32 10 3 26 26 11 21

https://doi.org/10.1371/journal.pone.0221380.t002
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Our main observation is the different behaviour of our model under the different initialisations

(healthy, epileptic and control groups). In all the cases we examined, the effect of stimulation both

on the internal connectivity of the stimulated nodes as well as on the overall connectivity of the

network was greater on the epileptic than the healthy and control subjects which behaved simi-

larly. This difference, combined with the observation that the effect on the non-stimulated nodes

was similar in all groups of subjects, suggests that the increased excitability of the epileptogenic

nodes is responsible for the greater short-term effect of stimulation on the epileptic subjects.

Moreover, the significantly higher local effect of stimulation that was initially observed in

the healthy subjects compared with the control subjects, suggests that there are indeed differ-

ences in the global connectivity of healthy and epileptic individuals and additionally indicates

that the global connectivity of epileptic subjects tends to counter the epileptogenic effects of

local connectivity. Finally, the long-term effects of stimulation on the internal connectivity

were similar in all groups despite the initial differences, suggesting that the stimulation effect

diminishes with different rates (faster in the more excitable regions) in each group.

Another finding is the great variation in the observed responses to stimulation among sub-

jects of the same group. The extent to which the inter-regional connections change, the long-

term preservation of the changes on the internal connections and the excitation of secondary

nodes, differed a lot from subject to subject despite the fact that the initial connectivity matrix

was the only factor differentiating the model used for each subject of a group. This fact suggests

that the great variability in the effectiveness of stimulation may ultimately be caused by the dif-

ferences in global brain connectivity among patients.

Finally, effects on the secondary nodes seem to appear without any prior indication, long

after the end of the stimulation session. This observation, may indicate that effects of stimula-

tion could appear long after the end of a session in brain regions where no stimulation was

applied. In our study, we observed this phenomenon in almost 5 of the epileptic subjects

within a period of 24 hours. We examined the possibility that these sudden changes in connec-

tivity are due to computational errors in the simulation, but the fact that the nodes that present

this sudden secondary excitation are almost always the ones that were affected immediately

after stimulation (Table 1), suggests that this phenomenon is more likely attributable to the

dynamics of the system and the underlying biological reality rather than to computational

errors. Moreover, this phenomenon may be able to explain some of the unexpected long-term

effects of TCS that appear in parts of the brain that were not stimulated. An example of this

phenomenon is presented in [67], where seizures reoccur starting from a different brain region

a month after an initially successful application of TCS.

Limitations

Our study is far from conclusive for two main reasons. Firstly, the models we used are very

rough approximations of the underlying biological reality and thus, the biological significance

of our findings is far from certain. Special attention should be paid on the use of an unconven-

tional learning rule as well as the fact that many of our constants were chosen to facilitate the

simulation and thus, they may not represent the reality of biological systems. Also, local con-

nectivity was initialised based on a previous model whereas measurements of fMRI allow for

model parameters derived from subject-specific activity across brain regions [68].

Secondly, due to time limitations only one stimulation session was modelled with a subse-

quent resting period of 24 hours. Although our results do capture an abnormal behaviour

(changes in secondary nodes), it is clear that given that in many of the studies discussed in the

introduction the follow up period was ranging from several days to a little less than a year, our

results may not represent the behaviour of biological systems for such long periods of time.
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In addition to those two main issues, it should be noted that our dataset was quite small (19

patients and 20 controls) and thus the significance of our findings needs to be verified through

larger datasets and experimental stimulation data. In particular, patient cohorts with brain

stimulation data and simulation experiments of longer duration will be crucial to validate the

predictive power of this model.

Conclusion

This study uses computational methods to examine the long-term effects of TCS on the con-

nectivity of the brain. Our findings indicate that even small differences in the internal connec-

tivity—and thus the excitability—of the stimulated regions can radically change the way

stimulation affects the brain. Moreover, the initial connectivity between brain regions also

greatly affected the way each subject behaved post-stimulation. In addition, the effect stimula-

tion has on non-stimulated brain regions seems to be a potential biomarker of long-term treat-

ment outcome. Finally, sudden and seemingly unprovoked changes in the connectivity hours

after the effects of stimulation could explain the unexpected effects of TCS that have been

observed in the past.

Supporting information

S1 Table. Data for brain regions and the corresponding nodes in our simulation.

(DOCX)

S1 Fig. Boxplot of the global rates r for healthy and epileptic subjects.

(TIF)

Author Contributions

Conceptualization: Marcus Kaiser.

Data curation: Frances Hutchings, Cheol E. Han, Bernd Weber, Marcus Kaiser.

Formal analysis: Christoforos A. Papasavvas, Chencheng Zhang.

Investigation: Emmanouil Giannakakis.

Methodology: Emmanouil Giannakakis, Christoforos A. Papasavvas, Bernd Weber, Marcus

Kaiser.

Project administration: Marcus Kaiser.

Software: Emmanouil Giannakakis, Chencheng Zhang.

Supervision: Frances Hutchings.

Writing – original draft: Emmanouil Giannakakis.

Writing – review & editing: Frances Hutchings, Christoforos A. Papasavvas, Marcus Kaiser.

References
1. Maschio M, Dinapoli L, Vidiri A, Pace A, Fabi A, Pompili A, et al. The role side effects play in the choice

of antiepileptic therapy in brain tumor-related epilepsy: a comparative study on traditional antiepileptic

drugs versus oxcarbazepine. Journal of Experimental & Clinical Cancer Research. 2009; 28(1):60.

https://doi.org/10.1186/1756-9966-28-60 PMID: 19419544

2. Urquhart B, Kim R. Blood-brain barrier transporters and response to CNS-active drugs. European jour-

nal of clinical pharmacology. 2009; 65:1063–70. https://doi.org/10.1007/s00228-009-0714-8 PMID:

19727692

Computational modelling of the effects of brain stimulation on the connectivity of epileptic patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0221380 February 6, 2020 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221380.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221380.s002
https://doi.org/10.1186/1756-9966-28-60
http://www.ncbi.nlm.nih.gov/pubmed/19419544
https://doi.org/10.1007/s00228-009-0714-8
http://www.ncbi.nlm.nih.gov/pubmed/19727692
https://doi.org/10.1371/journal.pone.0221380


3. McDannold N, Vykhodtseva N, Hynynen K. Targeted disruption of the blood–brain barrier with focused

ultrasound: association with cavitation activity. Physics in Medicine and Biology. 2006; 51(4):793–807.

https://doi.org/10.1088/0031-9155/51/4/003 PMID: 16467579

4. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N. Local and reversible blood–brain

barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications.

NeuroImage. 2005; 24(1):12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046 PMID: 15588592
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