Emmanouil Giannakakis

Address: Maria-von-Linden-Straße 6, 72076, Tübingen, Germany Email: giannakakismanos@gmail.com Personal Website

Profile

- PhD student at the IMPRS for Intelligent Systems
- **Research Interests**: Dynamics of spiking neural networks, models of neuronal plasticity, neuromorphic & reservoir computing, reinforcement learning and evolutionary dynamics

EDUCATION

PhD Computer Science/Theoretical Neuroscience	Tübingen, Germany
International Max Planck Research School for Intelligent Systems	2020 - 2025
MSc Artificial Intelligence	Edinburgh, UK
University of Edinburgh	2018 - 2019
BSc Mathematics	Athens, Greece
University of Athens	2014 - 2018
Experience	
 Max Planck Institute for Biological Cybernetics Doctoral researcher in the group of Anna Levina – Research focusing on the interaction between network structure and synaptic plasticity – Participation in smaller projects on neural data analysis and network dynamics 	Tübingen, Germany 2020 - 2024
Ocado Technology	London, UK
Software Engineer - Simulation team	2019 - 2020

- Development and maintenance of the supply chain simulation code used by Ocado
- Data analysis and optimization of supply chain and warehouse automation processes

Newcastle University	Newcastle, UK
Research internship at the ICOS group, supervised by Marcus Kaiser	Summer 2018
 Worked on a novel brain simulation framework aimed at investigating the long-term effects of transcranial stimulation on the brain connectivity of epileptic patients. 	

PUBLICATIONS

Preprints

- 1. Fardet T, Giannakakis E, Paulun L, and Levina A. Revising clustering and small-worldness in brain networks. 2024.
- 2. Giannakakis E, Khajehabdollahi S, and Levina A. Network bottlenecks and task structure control the evolution of interpretable learning rules in a foraging agent. 2024.
- 3. Vinogradov O, **Giannakakis E**, Buendia V, Uysal B, Ron S, Weinreb E, Schwarz N, Lerche H, Moses E, and Levina A. Effective excitability captures network dynamics across development and phenotypes. 2024.

4. Giannakakis E, Vinogradov O, Buendia V, and Levina A. The topology of E/I recurrent networks regulates the effects of synaptic plasticity. 2023.

Peer-reviewed Papers

- 1. Hamidi M, Khajehabdollahi S, **Giannakakis E**, Schäfer TJ, Levina A, and Wu CM. Modular Growth of Hierarchical Networks: Efficient, General, and Robust Curriculum Learning. In: *ALIFE 2024: Proceedings of the 2024 Artificial Life Conference*. MIT Press. 2024.
- Khajehabdollahi S, Zeraati R, Giannakakis E, Schäfer TJ, Martius G, and Levina A. Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks. In: The Twelfth International Conference on Learning Representations. 2024.
- 3. Giannakakis E, Khajehabdollahi S, and Levina A. Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents. In: vol. ALIFE 2023: Proceedings of the 2023 Artificial Life Conference. 2023.
- 4. Khajehabdollahi S, **Giannakakis E**, Buendía V, Martius G, and Levina A. Locally adaptive cellular automata for goal-oriented self-organization. In: vol. ALIFE 2023: Proceedings of the 2023 Artificial Life Conference. 2023.
- 5. Khajehabdollahi S, Prosi J, **Giannakakis E**, Martius G, and Levina A. When to Be Critical? Performance and Evolvability in Different Regimes of Neural Ising Agents. Artificial Life 2022:1–21.
- 6. Khajehabdollahi S, **Giannakakis E**, Prosi J, and Levina A. Reservoir computing with self-organizing neural oscillators. In: vol. ALIFE 2021: The 2021 Conference on Artificial Life. 2021.
- 7. Prosi J, Khajehabdollahi S, **Giannakakis E**, Martius G, and Levina A. The dynamical regime and its importance for evolvability, task performance and generalization. In: vol. ALIFE 2021: The 2021 Conference on Artificial Life. 2021.
- 8. Giannakakis E, Han CE, Weber B, Hutchings F, and Kaiser M. Towards simulations of long-term behavior of neural networks: Modeling synaptic plasticity of connections within and between human brain regions. Neurocomputing 2020;416:38–44.
- 9. Giannakakis E, Hutchings F, Papasavvas CA, Han CE, Weber B, Zhang C, and Kaiser M. Computational modelling of the long-term effects of brain stimulation on the local and global structural connectivity of epileptic patients. PLOS ONE 2020;15:1–21.

Conference Presentations

Contributed Talks

•	Artificial Life Conference 2023 Environmental variability and network structure determine the optimal plasticity mechanisms in embodied agents	Sapporo, Japan July 2023
•	32nd Annual Computational Neuroscience Meeting (CNS 2023) Local excitation and lateral inhibition enable the simultaneous processing of multiple signals in recurrent neural networks	Leipzig, Germany June 2023
•	Artificial Life Conference 2021 Reservoir computing with self-organizing neural oscillators	Online July 2021

Posters

Bernstein Conference 2024

 ${\it Frankfurt},\,{\it Germany}$

Dendritic nonlinearities and synapse-type specific input clustering enable the development of input selectivity in diverse settings.	September 2024
• AREADNE 2024	Milos, Greece
Overlapping E/I Neuronal Assemblies generate rich network dynamics and enable complex computations.	June 2024
• International Conference on Neuromorphic Computing and Engineering	Aachen, Germany
Network bottlenecks and task structure control the evolution of interpretable learning rules.	June 2024
• Computational and Systems Neuroscience Meeting (COSYNE 2024)	Lisbon, Portugal
Distinct excitatory and inhibitory connectivity structures control the dynamics and computational capabilities of recurrent networks.	February 2024
Bernstein Conference 2023	Berlin, Germany
Inhomogeneous connectivity structures in E/I networks enable the processing of multiple chaotic time series.	September 2023
• Computational and Systems Neuroscience Meeting (COSYNE 2023)	Montreal, Canada
Synaptic-type-specific clustering optimizes the computational capabilities of balanced recurrent networks.	March 2023
Bernstein Conference 2022	Berlin, Germany
The topology of E/I recurrent networks regulates their ability to learn the dynamics of chaotic attractors.	September 2022
• Computational and Systems Neuroscience Meeting (COSYNE 2022)	Lisbon, Portugal
Clustered recurrent connectivity promotes the development of E/I co-tuning via synaptic plasticity	March 2022
• 30th Annual Computational Neuroscience Meeting (CNS 2021)	Online
Recurrent connectivity controls the ability of inhibitory synaptic plasticity to produce E/I co-tuning	June 2021
Bernstein Conference 2019	Berlin, Germany
Local Inhibitory Plasticity boosts the storage capacity and robustness of attractor networks	September 2019

TEACHING

•	Teaching Assistant at the University of Tübingen Neural Coding (For Neural Information Processing MSc students)	2021 - 2022
•	Teaching Assistant at the University of Athens Computer Science I (Introduction to Programming for 1st year Mathematics Undergraduates)	2017 - 2018
•	Mathematics Tutor in Athens	2014 - 2018
	Putoring Students preparing for the Pannellenic exam (University Entrance) in Mathematics Physics and Biology	

STUDENT PROJECT SUPERVISION

- Miriam Bautista Salinero: Master Thesis
- Joao Barretto-Bittar: Master Thesis (co-supervised with Roxana Zeraati)
- Nicolas Patzlaff: Master Thesis (co-supervised with Oleg Vinogradov)
- Akif Erdem Sağtekin: Student assistant (MSc Student)
- Margaux Asclipe: Lab Rotation (MSc Student)

•	CNS 2023 travel award	2023
•	Eurobank Ergasias Graduate Award	2019
•	General Michael Arnaoutis Foundation Scholarship	2018
•	University of Edinburgh Informatics UK/EU Masters Scholarship	2018
•	Eurobank Ergasias Undergraduate Award	2014

FUNDING, SCHOLARSHIPS AND AWARDS

Dana Rapp: Bachelor Thesis

A scientific gathering of PhD students taking place during the yearly Bernstein conference

SKILLS

.

•

• Programming: Python (Proficient), Java (proficient), Matlab (Proficient), C++ (Some Experience)

• Andrej Ilić: Lab Rotation (MSc Student)

Thomas Zenkel: Essay Rotation (MSc Student)

- Libraries: PyTorch (Proficient), Numpy (Proficient), Brian 2 (Proficient), JAX (Some Experience), **NEST** (Some Experience)
- **OS:** Linux, Windows

• Tübingen AI center PhD funding

LANGUAGES

- Greek: Native Speaker
- English: Proficient (C2)
- French: Upper-Intermediate (B2)
- German: Intermediate (B1)
- **Russian:** Intermediate (B1)
- Persian: Conversational

September 2023

2024